
PHYSICAL DESIGN AUTOMATION FOR LARGE

SCALE FIELD PROGRAMMABLE ANALOG ARRAYS

A Dissertation
Presented to

The Academic Faculty

By

Ismail Faik Baskaya

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

December 2009

Copyright© 2009 by Ismail Faik Baskaya

PHYSICAL DESIGN AUTOMATION FOR LARGE

SCALE FIELD PROGRAMMABLE ANALOG ARRAYS

Approved by:

Dr. David V. Anderson, Advisor
Assoc. Professor, School of ECE
Georgia Institute of Technology

Dr. Sung Kyu Lim, Advisor
Assoc. Professor, School of ECE
Georgia Institute of Technology

Dr. Paul Hasler
Assoc. Professor, School of ECE
Georgia Institute of Technology

Dr. Abhijit Chatterjee
Professor, School of ECE
Georgia Institute of Technology

Dr. Aaron Lanterman
Assoc. Professor, School of ECE
Georgia Institute of Technology

Dr. Daniel Foty
President
Gilgamesh Associates LLC

Date Approved: July 31, 2009

DEDICATION

To my father, mother, and sister

for their love that will last forever.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, David V. Anderson for his contin-

ued understanding, support, and encouragement to overcome all the difficulties encountered

in this pursuit. I have learned much from him; not only about our research, but also on many

aspects of life. I hope I can be a vessel to pass on some of his light to other people. I would

also like to thank my co-advisor, Sung Kyu Lim for his support, guidance and discipline,

all of which were required for continued progress toward the end goal.

My thanks also go to my respected committee members Paul Hasler, Abhijit Chatterjee,

Aaron Lanterman, and Daniel Foty for their valuable time and feedback on my work. I want

to thank Paul Hasler additionally for his partial financial support that made completion of

this project possible.

The contribution of my other valued teachers in bringing me to this point can never

be forgotten; among them, my special thanks go to Omer Cerid, Gunhan Dundar, Gina

Minyard, Gyuszi Suto, and Husniye Midik.

This was a long road with many hardships, but also has given me the unique opportu-

nity to meet many people that I would not know otherwise. I would not succeed without

the warm friendship, selfless support, and valuable feedback from my dear labmates and

friends. Thank you all Walter, Jungwon, Tira, Ken, Brian, Venkatesh, Sourabh, Sunil, San-

mati, Shyam, Tyson, Hawjing (Mike), Bo, Nikolaos, Daniel, James, Taehyung, Christal,

Arindam, Stephen, Jordan, Craig, Csaba, Shubha, Degs, Aurele, Guillermo, Abhishek,

Woosuk, Devangi, Jorge, Mongkol, Young Joon, Dae Hyun, Michael, Mohit, Xin, Ser-

met, Utku, Ozgur, Pinar, Lakshmi, Tushar, Menderes, Zafer, Erhan, Cenk, Ebru, Arkadas,

Musemma, Seda, Ozkan and many other valuable friends that deserved to be here.

Last, but certainly not the least, I would like to thank Janet Arnold and Pam Halverson

for their great administrative support.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . ix

SUMMARY . xii

CHAPTER 1 INTRODUCTION . 1
1.1 FPGA vs FPAA Physical Design . 4
1.2 Floating-gate Based FPAA . 6
1.3 Existing Work on FPAA Research . 7
1.4 Contribution . 10

CHAPTER 2 FPAA PLACEMENT AND ROUTING 12
2.1 The scope of the tasks . 13
2.2 Input Circuit Interface . 14

2.2.1 Graph-based Internal Representation of Circuits 15
2.3 Target Architectures . 16

2.3.1 RASP2.5 and RASP2.7 . 17
2.3.2 RASP2.8 . 22

2.4 RASP Placer and Router (RASPER) . 23
2.4.1 Clustering, Placement and Routing in Early Development Phases

of RASPER . 25
2.4.2 Simultaneous Placement and Routing in RASPER 27
2.4.3 RASPER Placement and Routing Results 30

2.5 Generic Reconfigurable Array Specification and Programming Environ-
ment (GRASPER) . 31
2.5.1 Placement in GRASPER . 34
2.5.2 Routing in GRASPER . 35
2.5.3 GRASPER Placement and Routing Results 37
2.5.4 SWE Routing in GRASPER . 38
2.5.5 GRASPER Placement and Routing Results for Vector Matrix Mul-

tiplier (VMM) Circuits . 41
2.6 Impact of the Placement and Routing Tool on FPAA Research 46

CHAPTER 3 SIGNAL INTEGRITY AND PERFORMANCE OPTIMIZATION
48

3.1 Parasitic Extraction in RASPER . 49
3.1.1 Measurements vs Simulations Using a Band-pass Filter 49
3.1.2 Parasitic Extractions of Sample Circuits in RASPER and Their

Simulation Results . 54

v

3.2 Performance Optimization Using Simulated Annealing 58
3.2.1 Test Suite Setup . 63
3.2.2 Optimization Results . 64

3.3 Parasitic Extraction in GRASPER . 68
3.3.1 Model Order Reduction Using the Time Constant Equilibration

Reduction Method . 71
3.3.2 GRASPER Parasitic Extraction Results 73

3.4 TargetC Algorithm for Improved Performance of Routed Circuits 74

CHAPTER 4 FPAA ARCHITECTURE EXPLORATION 77
4.1 Previous Studies on FPGA Architecture Exploration 77
4.2 FPAA Architecture Exploration . 78
4.3 Design of Experiments . 81
4.4 Fitting Polynomial Regression Models to Experimental Data 85
4.5 Systematic Exploration of the Floating-gate-based FPAA 88

4.5.1 Selecting optimum orders for multi-variable polynomial models . 92
4.5.2 Optimization Using Polynomial Regression Models 96
4.5.3 Results and Conclusions . 99

CHAPTER 5 CONCLUSION AND FUTURE DIRECTIONS 105
5.1 Directions for Future Research . 107

APPENDIX A GRASPER USER MANUAL . 109
A.1 Running GRASPER . 109
A.2 Input files . 109
A.3 GRASPER commands . 110
A.4 Options . 111
A.5 Output files . 113
A.6 Generating SPICE netlists from switch file 114

APPENDIX B GRASPER ARCHITECTURE DESCRIPTION FORMAT . . . 115
B.1 element types . 115
B.2 elements . 118
B.3 other commands . 119

APPENDIX C SPICE NETLISTS FOR SOME OF THE GMC FILTERS USED
AS TEST CIRCUITS . 121

REFERENCES . 131

vi

LIST OF TABLES

Table 2.1 Resource usage for several analog circuits mapped to RASP2.7 using
RASPER. 31

Table 2.2 Placement and routing statistics for 8th order band-pass gmC filters
mapped to RASP2.8 using GRASPER. 38

Table 2.3 Placement and routing statistics for different sized VMM circuits mapped
to RASP2.8 using GRASPER. 43

Table 3.1 BPF metrics from simulation and measurement results, where center
frequency is in kHz, and gain in dB. 54

Table 3.2 DAC metrics . 55

Table 3.3 Performance metrics of a low-pass filter and their definitions. 64

Table 3.4 Test bench circuits. 65

Table 3.5 Performance metrics for an 8th order low-pass filter before and after
routing on 5000 FPAA architectures. 74

Table 3.6 Performance metrics obtained from measurements and different sim-
ulations of 4th order low-pass filter. 74

Table 3.7 Comparison of cut-off frequencies (fc) of the circuits with ideal inter-
connects, parasitic effects of routing, and parasitic effects of routing
with targetC algorithm. 76

Table 4.1 Summary statistics of 2000 data points for the circuit blp8. 91

Table 4.2 Summary statistics of 2000 data points for the circuit c1lp7. 91

Table 4.3 Summary statistics of 2000 data points for the circuit c2lp5. 92

Table 4.4 Summary statistics of 2000 data points for the circuit elp4. 92

Table 4.5 Optimum Order Polyfit results for the circuit blp8 using 2000 design
points and 200 validation points. 94

Table 4.6 Optimum Order Polyfit results for the circuit c1lp7 using 2000 design
points and 200 validation points. 95

Table 4.7 Optimum Order Polyfit results for the circuit c2lp5 using 2000 design
points and 200 validation points. 95

Table 4.8 Optimum Order Polyfit results for the circuit elp4 using 2000 design
points and 200 validation points. 95

vii

Table 4.9 Comparison of the filter metrics for circuits connected with ideal in-
terconnects and the median of the routed circuit simulation results. . . 100

Table 4.10 Optimization of architectures with respect to blp8 only. 101

Table 4.11 Optimization of architectures with respect to c1lp7 only. 101

Table 4.12 Optimization of architectures with respect to c2lp5 only. 102

Table 4.13 Optimization of architectures with respect to elp4 only. 102

Table 4.14 Optimization of architectures with respect to all circuits. 103

Table 4.15 Architectures found as results of different optimizations. 103

viii

LIST OF FIGURES

Figure 1.1 Traditional and reconfigurable array design flows. 2

Figure 1.2 Analog solution vs digital solution for multiplying two signals at 4 bit
resolution. 3

Figure 1.3 Steps in the physical design flow of FPGA and FPAA. 5

Figure 1.4 An empirical comparison of the on-resistance of three switch ele-
ments: a PFET, a transmission gate, and a floating-gate PFET. 7

Figure 2.1 Sample SPICE netlist entry for FPAA placement and routing tool. . . . 15

Figure 2.2 Graph representations of (a) circuit elements, and (b) a complete cir-
cuit with input and output pins. 16

Figure 2.3 An analog circuit and its mapping to the target FPAA architecture. . . 17

Figure 2.4 (a) Configurable Analog Block (CAB) for a FPAA based on floating-
gate devices. (b) Overall block diagram for a large-scale FPAA. (c)
Layout of a single CAB and its crossbar switch circuit. 18

Figure 2.5 Routing resource for a 2 × 2 FPAA that consists of local, vertical, and
horizontal crossbars with corresponding interconnect types. 19

Figure 2.6 Typical routing scheme used in FPAA crossbar switches. 21

Figure 2.7 Switch network bandwidth for different network length and crossbar
configurations. 21

Figure 2.8 RASP2.8 architecture . 22

Figure 2.9 Routing structure of RASP2.8 architecture showing multi-level rout-
ing lines with different capacitances for improved bandwidth and con-
nectivity. 24

Figure 2.10 Illustration of graph-based FPAA modeling in RASPER. 25

Figure 2.11 Illustration of switch elements (SWE) on a circuit. 29

Figure 2.12 Wires-switch relationship on a reconfigurable architecture. 31

Figure 2.13 Component pin-wire connection modeling in GRASPER. 32

Figure 2.14 Converting an undirected graph to a directed graph. 34

Figure 2.15 Grasper routing on the undirected routing resource graph. 36

ix

Figure 2.16 GRASPER routing results for an 8th order elliptic band-pass gmC
filter as viewed by FPAA RAT. 39

Figure 2.17 A diffusor circuit with one PFET and 7 SWEs. 40

Figure 2.18 A 2*2 VMM circuit that uses 2 OTAs and 6 SWEs. 42

Figure 2.19 GRASPER routing results for a 10*10 VMM circuit as viewed by
FPAA RAT. 43

Figure 2.20 GRASPER routing results for a 14*14 VMM circuit as viewed by
FPAA RAT. 44

Figure 2.21 GRASPER routing results for a 15*15 VMM circuit as viewed by
FPAA RAT. 45

Figure 3.1 Subcircuit block that replaces the interconnect in the circuit. 50

Figure 3.2 Band pass filter made from a cascade of a high-pass and a low-pass
filter. 50

Figure 3.3 Simulations of the BPF circuit for ideal interconnects (ideal), all OTA
in the same CAB (routing1), all OTA in the same column but in dif-
ferent CABs (routing2), and all OTA in different columns (routing3). . 51

Figure 3.4 Measurements of the BPF circuit for all OTA in the same CAB (rout-
ing1), all OTA in the same column but in different CABs (routing2),
and all OTA in different columns (routing3). 51

Figure 3.5 Simulations of the BPF circuit for all OTA in the same CAB (rout-
ing1), and all OTA in the same column but in different CABs (rout-
ing2). The second configuration is modified to approximate the first
configuration by adjusting the low-pass corner only (routing2a), or
both corners to achieve the same Q factor at a lower gain (routing2b). . 52

Figure 3.6 Measurements of the BPF circuit for all OTA in the same CAB (rout-
ing1), and all OTA in the same column but in different CABs (rout-
ing2). The second configuration is modified to approximate the first
configuration by adjusting the low-pass corner only (routing2a), or
both corners to achieve the same Q factor at a lower gain (routing2b). . 52

Figure 3.7 8 bit DAC implemented with binary weighted SWE. 55

Figure 3.8 Analog conversion of a sweep of digital values from 0 to 255 in an 8
bit DAC. 56

Figure 3.9 VCO with adjustable current inverters. 57

Figure 3.10 VCO output at Vctrl = 2.05 V where the oscillations just begin. 58

x

Figure 3.11 VCO output at Vctrl = 1.45 V where the maximum frequency of os-
cillation for synthesized circuit is attained at 167 kHz. 59

Figure 3.12 Schematic for a Winner-Take-All circuit with three current inputs. . . . 59

Figure 3.13 Winner-Take-All circuit simulation results for pre-synthesis and post-
synthesis circuit netlists. 60

Figure 3.14 Performance metrics of a low-pass filter. 64

Figure 3.15 Cut-off frequency (fc) errors for different optimization goals (lower
better, fc opt gives the lowest average values). Missing bars equal 0. . 66

Figure 3.16 Pass-band gain (gpass) errors for different optimization goals (lower
better, gpass opt gives the lowest average values). Missing bars equal 0. 66

Figure 3.17 Pass-band ripple (rp) values for different optimization goals (lower
better, rp opt gives the lowest average values). Missing bars equal 0. . 67

Figure 3.18 Roll-off rate (ror) values for different optimization goals (higher bet-
ter, ror opt gives the highest average values). 67

Figure 3.19 Extraction of wire segments in GRASPER. 69

Figure 3.20 Parasitic extraction in GRASPER. 70

Figure 3.21 Reducing the number of parasitic components in arrangements that are
most commonly encountered in interconnects extracted by GRASPER. 73

Figure 3.22 Simulations of circuits that correspond to the input netlist (pre-pnr
sim), parasitic extracted after routing for different routing switch mod-
els (post-pnr sim1 & sim2), and measurement (data points and curve
fit) for a 4th order butterworth low-pass filter. 75

Figure 4.1 Some interconnect topologies that can be used for configuring the con-
nections. 77

Figure 4.2 Variation of wires with respect to their orientations and span (segmen-
tation). 80

Figure 4.3 Classical experimental designs for 3 factors with 2 levels 83

Figure 4.4 A 3-dimensional view of an experimental design using latin hypercube
sampling (LHS). 84

Figure 4.5 The response surface in a polynomial regression model. 85

Figure 4.6 Pseudo code for Optimum Order PolyFit. 93

Figure 4.7 Desirability functions for different optimization goals 97

xi

SUMMARY

Field-programmable analog arrays (FPAA) are integrated circuits with a collection of

analog building blocks connected through a wire and switch fabric to achieve reconfigura-

bility similar to the FPGAs of the digital domain. Like FPGAs, FPAAs can help reduce the

time and money costs of the integrated circuit design cycle and make analog design much

easier. In recent years, several types of FPAAs have been developed. Among these, FPAAs

that use floating-gate transistors as programming elements have shown great potential in

scalability because of the simplicity they provide in configuring the chip. Existing tools for

programming FPAAs tend to be device specific and aimed at specific tasks such as filter

design. To move FPAAs to the next step, more powerful and generic placement and routing

tools are necessary.

This thesis presents a placement and routing tool for large-scale floating-gate-based

FPAAs. A topology independent routing resource graph (RRG) was used to model the

FPAA routing topology, which enables generic description of any FPAA architecture with

arbitrary connectivity including possible FPGA support in the future as well. So far, dif-

ferent FPAA architectures have been specified and routed successfully. The tool is already

in use in classes and workshops for analog circuit and system design. Efficient ways to

describe circuits and user constraints were developed to allow easy integration with other

tools. Analog circuit performance was optimized by taking into account the routing para-

sitic effects on interconnects under various device-related constraints. Parasitic modeling

allows simulation and evaluation of circuits routed on FPAA. Finally, a methodology was

developed to explore the optimum architecture for a set of circuit classes by evaluating the

efficiency of different architectures for each circuit class.

xii

CHAPTER 1

INTRODUCTION

We are witnessing an age where consumer electronics products are becoming outdated

in months, not years. In the fast pace of today’s electronics design world, time to market has

become more crucial than ever. Companies that can effectively use all available resources

to cut the design cycle are getting an edge against their competitors. Electronics design

processes, which are inherently iterative, must avoid the costly failures whether incurred

as money or time loss. Meanwhile, IC manufacturing technology continues to improve,

but the very high end processes are often accessible by only the big players. Applica-

tion Specific Integrated Circuits (ASIC) also require large scale production to be feasible.

Considering these factors, using reconfigurable arrays in the design process emerged as an

alternative to reduce time and money costs. Figure 1.1 demonstrates the potential to save

money, time, and energy by inserting the reconfigurable arrays into the design process.

Since their introduction into the market in 1985 with Xilinx XC2064, Field-Programmable

Gate Arrays (FPGA) have been attractive reconfigurable options for digital system design

and testing. FPGAs not only give engineers the flexibility of trying their incomplete de-

signs and bring them to perfection, but can also hit the market early enough with a smaller

investment for a limited production allowing the small players into the game as well. To-

day, FPGAs continue to receive interest from both engineers who use them for product

prototyping and CAD researches who try to find ways to get the best out of these versatile

devices.

However, time to market and design costs are not the only factors that determine the

success of the design process. As embedded computing becomes mainstream, a signifi-

cant market has emerged for feature-rich signal processing devices that consume very little

power. While digital processors and FPGAs can perform the desired functions, there are

many cases where an analog design can offer the same functionality at a fraction of the

1

Figure 1.1. Traditional and reconfigurable array design flows.

power required for the digital solution [1]. For computations that don’t require very high

resolutions, an analog solution is less expensive than a digital solution. Figure 1.2 demon-

strates the resources required for the same task of multiplying two signals with 16 distinct

levels. A 4-bit digital multiplier requires 466 transistors, which is 66 times more than the

number of transistors in a Gilbert multiplier that can perform as well for this resolution

and maybe higher. In cases where a fast, approximate result is the real need rather than

a very precise one, analog systems can replace digital systems with huge power and chip

area savings.

However, analog design is expensive. One option that has become more viable in recent

years is the use of Field-Programmable Analog Arrays (FPAA). FPAAs are analogous to

FPGAs in that they allow designers to rapidly prototype circuits without having to fabricate

new ICs. As FPAAs become more capable with their increased sizes and resources, the

need for new CAD tools becomes more apparent. On the other hand, the methods that

work for the physical design of digital circuits in FPGAs don’t work very well for FPAAs.

The criteria for a successful design are different and more complex. Signal integrity of an

analog circuit is more difficult to maintain and can severely impact the functionality of the

2

A
B S
Cin

Cout

1-bit Full Adder

Vi1

Vi2

Vdd

Vout

Vbias

F.A. F.A. F.A. F.A.F.A.

F.A. F.A. F.A.F.A.

F.A. F.A.F.A.

F.A. F.A.F.A.

0 0 0

1

a0a1a2a3
b0

b1

b2

b3a3

b3

p6 p5 p4 p3

p0

p1

p2

p7

4-bit digital multiplier analog multiplier

(a)

(b) (c)

Figure 1.2. Analog solution vs digital solution for multiplying two signals at 4 bit resolution. (a) 1-bit
Full Adder contains 24 transistors. (b) A 4-bit multiplier contains 466 transistors (15 Full Adders, 12
AND gates, and 5 inverters). (c) A Gilbert multiplier cell contains only 7 transistors and 2 resistors.

circuit; therefore, it is of higher priority than achieving the most compact design. Increased

segmentation of wires may result in additional capacitances that can result in undesired

circuit behavior after routing. Another challenge to be faced is the fact that parasitics not

only deteriorate the performance as in digital circuits but may also destroy the functionality

completely, which requires monitoring the impact of parasitics on performance metrics

during the synthesis steps. A placement and routing solution that satisfies all device and net

constraints may not necessarily be a desired one; the performance often has to be optimized

as well.

The primary goal of this research is to make large-scale floating-gate-based FPAA tech-

nology [2] more accessible and more practical by means of automated placement and rout-

ing tools. Existing tools do not consider signal integrity issues, and they have been de-

veloped to program specific FPAA architectures with a small number of CABs, which are

dedicated to specific tasks such as filtering; therefore, they are not appropriate for the new

3

large-scale FPAAs, which have more flexibility and variety in the type of tasks that can be

performed. Our work is targeted at a particular type of large-scale FPAA that uses analog

floating-gate elements for programming both routing and configuration of the components;

however, it can be extended to support other FPAA technologies as well. The details for

this technology is discussed in Section 1.2, and a historical background of the problem will

be presented in Section 1.3. Chapter 2 describes the CAD tools developed for automatic

placement and routing of analog circuits on the target large-scale FPAAs. In Chapter 3,

a model for simulating the impact of non-ideal interconnects is presented. In addition, a

methodology for using this model in optimization is described. In Chapter 4, a methodol-

ogy for FPAA architecture exploration and results from evaluation of these architectures is

presented. Chapter 5 gives an insight on possible directions this research can lead to, and

concludes this thesis.

1.1 FPGA vs FPAA Physical Design

Design automation, specifically in the phases consisting of clustering, placement, and rout-

ing, is often deeply influenced by the architecture and device model of the implementation

medium one is working with. Although there have been general solutions proposed to han-

dle a wide variety of architecture models, usually these design tools are not as efficient as

techniques customized specifically for pre-defined architectures. This same idea applies

to using FPGA design automation methods for solving FPAA applications. The similari-

ties and the differences between FPGA and FPAA physical design flows can be viewed as

depicted in Figure 1.3.

A comparison between FPGA and FPAA design decisions can be approached from

three fronts: the actual algorithms that are used, the metrics used in the algorithms, and

the architectures used in the design. Some of the traditional FPGA clustering algorithms

include multi-level clustering based on delay/area minimization to reduce the number of

4

Design Description
(VHDL, verilog)

Logic Synthesis

Technology Mapping

Place & Route

Implementation

BLIF netlist

High Level
Design Description

Analog Synthesis

Technology Mapping

Place & Route

Implementation

SPICE netlist

Figure 1.3. Steps in the physical design flow of FPGA and FPAA.

repeatable blocks. These algorithms are highly influenced by the device model one is deal-

ing with and will not work without major changes for the FPAA hardware implementation.

The device and interconnect constraints in the floating-gate-based FPAA make traditional

FPGA algorithms unapplicable. During the placement phase, FPGA architectures often

use simulated annealing or genetic (evolutionary) algorithms to achieve an optimal solu-

tion. Although similar ideas can be applied to FPAA implementations, the cost functions

in these algorithms vary. Typically, higher priority is placed on reducing the wire length,

net density, and overall delay in placement and routing for FPGA or other digital systems.

On the other hand, FPAA and analog architectures need to focus on reducing the loading

effects of routing parasitics and distortion of the signals.

The device architecture plays a major role in the physical synthesis decisions that are

made. For instance, FPGAs traditionally have a very simple interconnect network archi-

tecture, where the vertical and horizontal channels have the same number of routing tracks

and propagate the same signal down a pipeline. Each horizontal and vertical wire is seg-

mented and is shared among several interconnects. This varies quite significantly from most

FPAA, where the interconnect wires are usually not segmented and a single interconnect

occupies the entire vertical/horizontal highway. The basic logic element used in FPGAs

is called configurable logic block (CLB), and is a combination of programmable lookup

5

tables with universal functionality and flip-flops in general; whereas a configurable analog

block (CAB) in a FPAA consists of many more various programmable analog components

with distinct functionality. In addition, there are no sequential elements in a FPAA. Thus,

behavioral as well as physical synthesis needs entirely different approaches to handle new

cost functions under new types of device constraints. Thus, it is fairly difficult to directly

associate automation algorithms between FPGAs and FPAAs.

1.2 Floating-gate Based FPAA

A floating-gate element is a polysilicon layer that has no contacts to other layers; this

polysilicon layer can be the gate of a MOSFET and can be capacitively connected to other

layers. Charge on the floating gate is stored permanently, providing a long-term memory

because it is completely surrounded by a high-quality insulator. The charge on a floating

gate can modulate a MOSFET’s channel current; therefore, the floating gate is not only a

memory, but also can be an integral part of a computation. The charge on the floating gate is

modified through a combination of hot-electron injection and electron tunneling [3, 4, 5].

The small size and scalability make these approaches ideal for integration with classical

analog techniques (e.g., voltage references, filters, ADCs, or DACs) as well as larger-scale

analog signal processing techniques (e.g., compression or classification for audio or image

signal processing).

Floating-gate transistors function in two ways in the FPAA: as switches that connect

device pins or as configuration devices for analog components in the CABs. Using floating-

gate transistors as switches have advantages over using a standard PFET or a transmission

gate. With floating-gate transistors, the resistance of the switch can be controlled by the

amount of injection, and a high aspect ratio is not required to obtain lower resistance values.

Floating-gate switches also do not require complementary control signals as in transmission

gates. Moreover, their resistance exhibits more linearity and consistency over the operating

voltage ranges. Figure 1.4 gives a comparison between different switch elements [6].

6

0 0.5 1 1.5 2 2.5 3
10

3

10
4

10
5

10
6

Voltage (V)

R
es

is
ta

nc
e

(Ω
)

pFET
transmission gate
FG pFET

Figure 1.4. An empirical comparison of the on-resistance of three switch elements: a PFET, a transmis-
sion gate, and a floating-gate PFET where all of the pFETs are 3.6 µm wide by 1.2 µm long, operated
with a supply of 3.3 V.

When floating-gate devices are used as just plain switches, they would look like any

other FPAA, except for the small size and smaller level of parasitic resistance (R) and

capacitance (C), which allows us to build larger arrays. But floating-gate switches can be

used more than just as switches; we can actually use them in place of transistors with fixed

gate voltages as well. They can act as anything from resistors and spreading elements to

current sources and bias elements.

1.3 Existing Work on FPAA Research

The first configurable analog systems appeared with the use of analog computers in the

1960s. An analog system that can be configured using current signals and varying length

of coaxial cables was used for preprocessing a radiation detector signal [7]. Another com-

puting system that had the flexibility to configure the system topology and component

parameters was intended for power system simulation for transformers, transmission lines,

and valves [8]. An analog signal processor (ASP) that emulates z-domain filters by chop-

ping the input signal and reconstructing it by means of a digitally controlled transmission

gate [9] was developed in 1987.

7

At the end of 1980s and early 1990s, neural networks and related applications began

to dominate the research on analog configurable systems [10, 11, 12, 13, 14]. Around the

same time, introduction of cellular neural networks [15, 16] attracted attention to the con-

figuration of circuits using only local interconnects between the neighboring computational

units. A field-programmable IC using CMOS transmission gates for configuring the con-

nections between various analog components targeted analog neural network synthesis and

testing [17]. This architecture mostly suffered from the parasitic capacitances of the CMOS

switches inserted into the signal path, and the routing wires; and could not store the circuit

operating parameters. A programmable vector matrix multiplier targeting multi-layer neu-

ral network implementations takes advantage of adding the current-mode signals for free

when they are connected together at a node [18].

There has been a transition from the earlier analog configurable systems to FPAAs after

adopting a hierarchical organization of the architectures by collecting the computational

analog elements into CABs. A low-power FPAA utilizing MOS subthreshold techniques

introduced hierarchical interconnect architectures to FPAA design by collecting a set of

analog components in CABs [19, 20]. This architecture was capable of storing circuit pa-

rameters in multi-valued memories as well. These research efforts produced further results

as a MOS transconductor-based FPAA [21, 22] enabled by the programmable resistors used

in the reconfigurable interconnect circuitry. These programmable resistors are essentially

matched MOS transistors that are cross-coupled to eliminate the non-linear components in

differential signals [23]. A current mode FPAA was implemented in bipolar technology,

operating on the order of 100 MHz at the cost of a more expensive process technology and

higher power consumption [24, 25]. Other current mode techniques were used in FPAAs

based on current conveyors [26], and a folded cascode integrator [27]. There were efforts

to build discrete-time FPAA architectures using switched-capacitor circuits as the configu-

ration elements to operate in the voltage mode [28, 29, 30, 31], or switched current tech-

niques to operate in the current mode [32] as well. FPAAs based on the switched-capacitor

8

technology are less sensitive to the effects of routing compared to their continuous-time

counterparts; however, their achievable bandwidths are strictly limited by the switching

frequency, making them an option only at the lower end of the frequency spectrum. The

switched-capacitor FPAA technology developed by Bratt et. al. [28] was later commercial-

ized by Motorola. Anadigm [33] is a leading commercial FPAA vendor distributing this

product at present, and is currently supplying FPAAs with 4 (2×2) simple switch-capacitor

based CABs. Later extensions made attempts to integrate both FPAA and FPGA compo-

nents into field-programmable mixed-signal arrays (FPMAs) [34, 35, 36]. A survey paper

[37] reviews in detail the early works mentioned above in the area of field programmable

analog and mixed-signal circuits.

Several other FPAA architectures have been reported more recently. The interconnect

structure in the field-programmable transistor array (FPTA) intended for evolvable hard-

ware lets the user reconfigure the IC at the finest level of granularity; that is, the pins of each

transistor can be individually accessed via the programming switches [38]. This strategy

results in significant degradation of the target circuit performance because of the increased

routing parasitic effects. A high-performance radiation-hard FPAA that uses anti-fuse tech-

nology has been proposed to reduce the parasitic effect and improve signal integrity [39].

However, this architecture is one-time programmable only, so can not be reconfigured for a

different application. An architecture that increases the number of locally accessible CABs

by tiling them in a hexagonal array eliminates the need for switches [40] utilizing output

transconductance amplifier (OTA) gains for both computation and connection. However,

this architecture contains only capacitors in addition to the OTAs, limiting the range of sup-

ported applications. There are also several works that focus on FPAA designs for testing

[41, 42].

Currently several CAD efforts for FPAAs exist in the literature, including behavioral

synthesis [43, 44], technology mapping [45, 46], and place-and-route [43, 47, 48, 46].

However, these works focus only on small-scale, switch-capacitor-based designs. On the

9

other hand, the floating-gate-based FPAAs in this study contain up to 84 (6×14) complex

CABs at present, and still increasing; therefore, a more scalable approach is necessary to

handle the complexity. In addition, the device and interconnect constraints in the floating-

gate-based FPAAs are radically different from the switch capacitor-based FPAA. Signifi-

cant work has been done on logical and physical synthesis for LUT (lookup table)-based

FPGAs during last 20 years [49, 50, 51, 52, 53, 54, 55, 56, 57, 58]. As discussed earlier

in Section 1.1, FPAAs have to be approached differently from the FPGAs because of the

increased sensitivity of the target analog applications to the routing parasitics. Still, po-

tentially useful approaches may be found among the placement and routing algorithms for

FPGAs that may also be utilized for the FPAAs taking the analog design requirements into

account.

1.4 Contribution

The major contributions of this work can be summarized as following:

• A placement and routing tool for large scale FPAA was developed. This tool is

already in use by researchers and students for analog circuit and system design as

well as FPAA architecture prototyping purposes.

• A generic FPAA architecture description interface enabled by a topology independent

routing resource graph (RRG) was developed. With this interface, it is possible to

describe a wide range of FPAA architectures with arbitrary connectivity, including

possible FPGA and FPMA support in the future. So far, different FPAA architectures

have been specified and routed successfully.

• A robust and efficient way of specifying input netlists along with FPAA specific

constraints was developed.

• A parasitic extractor to simulate and evaluate the impact of the FPAA routing effects

was developed. User can decide the accuracy and complexity of the extracted circuits

10

by providing different level SPICE models for CAB components, or by deciding the

highest frequency of interest in simulation.

• Analog circuit performance was optimized by taking into account the routing para-

sitic effects on interconnects under various device-related constraints.

• A methodology was developed to explore the optimum architecture for a set of cir-

cuit classes by evaluating the efficiency of different architectures for each circuit

class. This will be especially useful to help hardware designers in making strategic

decisions for their prototype ICs.

11

CHAPTER 2

FPAA PLACEMENT AND ROUTING

Early FPAAs were just a collection of a few operational amplifiers and capacitors op-

timized for building filter applications [37]. For such small architectures with simple in-

terconnect topology and small-sized circuits to program on them, manual placement and

routing could be sufficient. The tools developed for these FPAA systems, such as Anadigm

Designer[33], consisted of a schematic capture interface for the circuit entry that allows

user to select and connect together circuit elements from the available analog blocks to

perform desired functions. The complexity of such devices did not require sophisticated

placement and routing algorithms that are often designed for larger scale circuits.

As FPAAs grow in size, several factors affect their usability. It is now possible to map

larger circuits to the FPAAs because of their increased resources; however, this can be

harder and more tedious to do without the aid of an automated tool. Larger systems also

benefit from abstraction for ease of design, analysis, and description. Average user of the

FPAA cannot be expected to know the details of the topology to be able to know where to

place each circuit component, pick the wires to connect them, and generate a data stream.

Architectural details should be hidden from the engineers whose real objective is to imple-

ment and test their conceptual designs without additional overhead. Furthermore, there is

more than the number of components to consider for the circuits to be implemented on the

FPAA. The limited number of wires and switches that constitute the routing resources of

a small-scale FPAA had less impact on the circuit performance. As architectures grow, so

does the number of interconnects and the parasitic impedances. They have to be accounted

for more carefully to avoid destroying the functionality of the circuit. It is a very difficult

task to account for the interconnect non-idealities as well when manually routing circuits.

A tool must replace the human for tasks human cannot do efficiently. Placement and rout-

ing tools allow moving designs from one platform to another without having to manually

12

create new mapping tables if designed to support different architectures. This is especially

useful in the availability of multiple FPAA architectures to choose from. Tools are also

needed for architectures to improve. Developers of the FPAA must rigourously test their

chips with circuits that continuously evolve and grow in size. A placement and routing tool

will also evolve in parallel in addition to continued support for the improved architectures.

2.1 The scope of the tasks

Physical design for FPAA consists of several steps as depicted in Figure 1.3. This work

focuses only on the placement and routing stages of the physical design for FPAA. Behav-

ioral synthesis from high level specifications that is analogous to the logic synthesis for

digital circuits is not within the scope of this study. Input circuits for the placer must be

constructed using only the components that are available in the target FPAA. Therefore, the

output of technology mapping is also assumed to be readily available. The placer takes the

technology mapped circuit descriptions in the form of SPICE netlists, and finds an avail-

able circuit element or block on the FPAA CABs for each component of the implemented

circuit. The router takes the output of the placer and finds switch coordinates that establish

the necessary connections via routing wires between the pins of placed components.

One exception to starting from technology mapped circuits is the optional assignment

of capacitance values from a signal net to ground. In this case, the objective is to achieve the

specified capacitance value through the wires and discrete components if necessary rather

than using the FPAA CAB components alone. This algorithm will be explained in more

detail in Section 3.4. Another exception is the use of switch elements (SWE) in circuit

descriptions. These circuit elements don’t correspond to any component in FPAA CABs,

but are emulated using the routing fabric. The algorithm and the conditions for using this

element will be explained in more detail in Section 2.4.2.

In addition, simulation models for routed circuits are generated using a parasitic ex-

tractor. This is useful as a quick verification of the circuit performance after placement

13

and routing. The methods and results for parasitic extraction in different generations of the

tools are explained in detail in Sections 3.1 and 3.3.

2.2 Input Circuit Interface

In digital circuits, each signal can be driven by the output of only a single gate. This

condition prohibits the connection of two outputs, which would lead to ambiguous logic

levels, even potential circuit damage when powered. Popular netlist formats such as BLIF

reflects this limitation well [59]. When analog circuits are concerned, it becomes vague

where the output of an element type can be, unless it’s a high level circuit block with

well-defined input and output ports. For basic elements, such as a FET, the assignment

of input and output ports may vary depending on how this element is connected to the

rest of the circuit. Furthermore, it is not uncommon to observe the outputs of multiple

elements connected together. As an example, an inverter, which is a basic element from a

digital perspective, should not be connected to another inverter at their outputs. The same

inverter when viewed from an analog perspective, consists of a PFET and NFET as basic

elements, both of which have their outputs connected to each other to perform the desired

function. This makes the use of single gate-driven netlist formats which work very well for

describing digital circuits inconvenient for analog circuit description. To reflect this nature

of the analog circuits, SPICE netlist format is found to be very suitable. SPICE is a widely

used EDA tool and is already familiar to most analog designers [60].

Input netlists used by the FPAA placement and routing tools are fully compatible with

SPICE format; therefore, they can also be used for simulation in addition to circuit de-

scription. To enter placement and routing tool specific commands that are not available in

SPICE while preventing SPICE from unrecognized keywords, a special text sequence that

can be treated as a comment line by SPICE is used: “∗ >>”. If just “∗” is used, the line

is regarded as a comment line by the placement and routing tool as well. The lowest level

netlist entry allowed by both RASPER and GRASPER is a subcircuit that corresponds to

14

Figure 2.1. Sample SPICE netlist entry for FPAA placement and routing tool.

a component in FPAA. Therefore, the lowest hierarchy elements of the input netlist must

be instantiations of subcircuits that contain information regarding the corresponding CAB

component including simple analog elements such as capacitors and transistors. A sample

SPICE netlist that can be used as an input to the placement and routing tool is presented in

Figure 2.1. For additional details on the input circuit file format, refer to Appendix A.

2.2.1 Graph-based Internal Representation of Circuits

Each circuit element from the SPICE netlist is stored as a graph vertex (cell) and each signal

node is stored as a hyper-edge (net). A net can be connected to the same cell from different

terminals of the element; each connection point is modeled as a pin of the cell. The graph

element equivalents of the circuit elements are shown in Figure 2.2a. Figure 2.2b depicts

the equivalent graph representation of the circuit described by the netlist in 2.1. Since

input and output terminals are not determined, signal flow direction is not clearly defined;

therefore, representing the circuit with an undirected graph is preferred to using a directed

graph.

15

pin

cell
net1

net2

signal1
signal2

(a)

Vout

Vbias

Vdd

GND

Vx

Vin

Vbias
Vout

Vin

Vx
Vdd

GND

(b)

Figure 2.2. Graph representations of (a) circuit elements, and (b) a complete circuit with input and
output pins.

Once a circuit is captured as a graph, the objective is to map each graph cell (i.e.,

circuit component) to an actual component on the target FPAA architecture and determine

the switches that define a path between pins that need to be connected. Figure 2.3 illustrates

an analog circuit mapping onto the actual FPAA.

2.3 Target Architectures

During the course of this project, different versions of tools emerged to reflect the changes

in supported architectures as well as the features desired. These will be referred to as

RASPER and GRASPER to distinguish between the capabilities and supported architec-

tures between each tool. RASP2.5 and RASP2.7 architectures are built using CABs similar

to RASP1.0, which is the first member of the RASP family [61]. RASPER was developed

to support placement and routing of these architectures. When RASP2.8 was introduced

later, the modified interconnect structure rendered RASPER obsolete, and GRASPER was

developed to map circuits to this architecture.

16

+

WR_OTA

+

WR_OTA

+

WR_OTA

+

WR_OTA +

WR_OTA

+

WR_OTA

Figure 2.3. An analog circuit and its mapping to the target FPAA architecture.

2.3.1 RASP2.5 and RASP2.7

RASP 2.5(7) has 7(9) rows and 8 columns for an array of CABs that fall into two types:

general purpose CABs, which contain a selection of basic components, and VMM CABs,

which have a special purpose Vector Matrix Multiplier (VMM) circuit block in addition

to the components of a general purpose CAB. Both architectures have been built using

two-poly four-metal CMOS process with 0.35 µm minimum feature size.

The routing resources in RASP2.5 and RASP2.7 are shown in Figure 2.5. There exist

three kinds of routing switch boxes: local, vertical, and horizontal crossbar. The columns

in the local crossbar (named vertical local wire or vlwire) are used to establish connection

among components in the same CAB. The vertical crossbar is used to connect compo-

nents from CABs in the same column. Last, the horizontal crossbar is used to connect

components from CABs in different columns. The routing switches in local, vertical, and

horizontal crossbars are respectively called local, vertical, and horizontal switches. Each

column in the vertical crossbar (named vertical global wire or vgwire) extends all the way

from top to bottom, while each row in the horizontal crossbar (named horizontal global

wire or hgwire) extends all the way from left to right.

Each row or column in these crossbars can only be used by a single interconnect. In

17

Analog Circuit Components

+

WR_OTA

C4 (AFGA)

In Out

+

WR_OTA

+

WR_OTA

(a) (b)

40x48
x-bar

CAB

16x16
x-bar

40x48
x-bar

CAB

16x16
x-bar

40x48
x-bar

CAB

16x16
x-bar

40x48
x-bar

CAB

16x16
x-bar

(c)

Figure 2.4. (a) Configurable Analog Block (CAB) for a FPAA based on floating-gate devices, where
each CAB contains a four-by-four matrix multiplier, three wide-range operational transconductance
amplifiers (OTAs), three fixed–value capacitors, a capacitively coupled current conveyor (C4), a signal-
by-signal multiplier, one PFET, and one NFET. (b) Overall block diagram for a large-scale FPAA. The
switching interconnects are fully connectable crossbar networks built using floating-gate transistors.
(c) Layout of a single CAB and its crossbar switch circuit. The switches are to the left of the actual
components and dominate total area use by about 2/3 share.

addition, once a net occupies a row (or column), the sum of all routing switch capacitances

in this row (or column) contribute to the parasitics of the interconnect. Each switch con-

tributes a parasitic diode capacitance from the drain of the switch to ground regardless of

the switch being on or off. This is the depletion capacitance, and the worst-case (highest)

value of this capacitance is when the switch is off [62]. Since there is a number of switch

capacitances in parallel on a line, the total capacitance of the line is assumed to be the sum

of all these off capacitances. The difference that comes from the single on-switch on the

line is negligible compared to the total line capacitance. When a switch is turned on, there

will also be a resistance in series on the order of 10 kΩ [63].

The following three kinds of interconnects are possible, depending on the placement of

components (see Figure 2.5):

• intra-CAB wires (type 1): these wires connect components in the same CAB using

the switches in the local crossbar. We model the resistance of local switches that are

turned on (= R). The capacitive component of the wire includes all local switches

in the entire row (= Cw) and column (= Cl) occupied by the wire. The parasitics of

18

R

Cw

R
type1

Cl Cw

type2
R

Cw

R

Cv Cw

R R RR
type3

Cw Cv Ch Cv Cw

Cl

Cv

Ch

R

loc x-bar

ve
r x

-b
ar

hor x-bar

C
A
B

Cw

type1

type2
type3

Figure 2.5. Routing resource for a 2 × 2 FPAA that consists of local, vertical, and horizontal crossbars.
Three types of interconnects (1: intra-CAB, 2: inter-CAB/intra-column, 3: inter-column) are also
shown.

these wires are minimal.

• inter-CAB/intra-column wires (type 2): these wires connect components from differ-

ent CABs located in the same column. We model the resistance of vertical switches

that are turned on (= R). The capacitive component of the wire includes all verti-

cal switches in the entire row (= Cw) and column (= Cv) occupied by the wire. The

parasitics of these wires are between those of type 1 and 3 wires.

• inter-column wires (type 3): these wires connect components from different CABs

located in different columns. We model the resistance of vertical and horizontal

switches that are turned on (= R). The capacitance of all vertical and horizontal

19

switches along the rows (=Cw and Ch) and columns (=Cv) occupied by the wires are

modeled. The parasitics of these wires are maximal.

We assume that Cw < Cv, Cw < Ch, and Cl < Cv. In case the interconnect contains more

than two components (=multi-pin net), each source-to-sink connection can be individually

modeled. The type 1 wires are alternatively called i-nets in this proposal, whereas type 2

and 3 are called x-nets. Zero-value time constant analysis [64] on the type 1 interconnect

yields

ω ≈
1

R(2Cw +Cl)
(2.1)

for the dominant pole only. The equation shows that each switch contributes a pole when

added into the circuit path and has a negative impact on the bandwidth.

As a result of the exclusive usage of routing tracks (= rows and columns in the cross-

bars) by the interconnect, the number of available routing tracks imposes a strict design

constraint. For example, the number of vertical tracks that have to be shared by all CABs

in the same column is 10 in RASP2.5 and RASP2.7 architectures. The reason for this strict

design constraint is because of the inverse relation between the number of routing switches

in each track and bandwidth. An experiment was done earlier to explore the effect of

routing configurations with different number of switch pairs and varying sizes of crossbar

switch networks as depicted in Figure 2.6 [6]. Increased number of switch pairs makes the

RC chains displayed in Figure 2.5 longer (i.e., increased resistance and capacitance), and

the capacitance values at each node of these RC chains increase proportional to the crossbar

switch network size. As a natural result, bandwidth drops as the crossbar switch network

size or number of switch pairs increase as demonstrated in Figure 2.7. Architectural design

space exploration can reveal good trade-off points between the number of routing switches

and bandwidth degradation.

20

Figure 2.6. Typical routing scheme used in FPAA crossbar switches. Each CAB has a local crossbar
network for routing devices within the cab. These local networks connect to global routing lines that
run vertically between the CABs. Horizontal global routing lines connect the vertical routing lines
across the chip.

1 2 3 4 5
.1

1

10

100

10x10

20x20

40x40

80x80

160x160

 Dimensions of
Crossbar Switch
 Network

B
an

dw
id

th
 (

M
H

z)

Number of Switch Pairs

Figure 2.7. Switch network bandwidth for different network length and crossbar configurations.

21

2.3.2 RASP2.8

RASP2.8 [65] has an 8 row by 4 column array of two major CAB types. These CABs

consists of analog building blocks or elements such as OTA, Floating-gate input OTA

(FGOTA), buffer (a negative feedback self connected FGOTA), capacitor, field-effect tran-

sistors of n (NFET) and p (PFET) type diffusion, transmission gate (TGATE), multiple

input translinear element (MITE), Gilbert multiplier, and a floating-gate input current mir-

ror. Floating-gate transistors are used for some of these elements either as input stages to

allow controlling the offsets resulting from device mismathches, or as bias elements that

help configuring the operating point of the circuit blocks. The first major type contains

all component types except current mirrors and multipliers; the second type contains cur-

rent mirrors, multipliers, and FGOTA. RASP2.8 has been built using two-poly four-metal

CMOS process with 0.35 µm minimum feature size. A die photo of the fabricated IC and

the CAB types with internal compoenents are presented in Figure 2.8.

(a)

Gilbert Multiplier

FGOTA

Current Mirror

OTA / FGOTA

Buffer

NFET / PFET

MITE

Capacitance

Transmission Gate

(b)
CAB1 CAB2

Figure 2.8. RASP2.8 architecture (a) Die photo of the fabricated IC. (b) CAB types with internal com-
ponents.

RASP2.8 routing structure brings major changes compared to the previous architectures

in the RASP family. In addition to the vertical local and global wires used in RASP2.7,

there are also vertical and horizontal nearest neighbor wires in RASP2.8. By adding these

wires, the mesh interconnect style that is widely used in FPGA interconnect topologies

is also incorporated into RASP2.8. The most important change in the wire topology is the

22

existence of bridge switches between the consecutive wire segments on a line; whether they

are local wires (spans one CAB row) or nearest neighbor wires (spans two CAB rows). In

RASP2.5 and RASP2.7, wires on a line were completely isolated from each other, and all

inter-CAB connections had to go through a single global wire to minimize the number of

switches, highly limiting the inter-CAB routing options, and wasting a whole column even

if just a small portion of that column is intended to be connected. RASP2.8 allows wire

segmentation, which utilizes the routing area better, reducing the parasitic capacitance on

each wire segment, and relaxing the strict design constraints on the global lines at the cost

of additional switches to be added on the signal path.

RASP2.8 also has dedicated power lines for VDD and ground that span all columns

vertically and can be accessed by any component pin without using additional wires or I/O

pins. RASPER was designed based on the simpler RASP2.5 and RASP2.7 interconnect

topologies, which provided very limited options for routing; effectively associating each

placement solution with only one routing solution if it exists. The new wire types, wire

segmentation levels and the possibility of connecting segmented wires through the bridge

switches in RASP2.8 increase the routing configurations and the interconnect types greatly.

With the increased routing possibilities in RASP2.8, RASPER can no longer support the

interconnect model; therefore, GRASPER was created to map circuits to this architecture

and possible future extensions. The routing structure with all wire types in RASP2.8 archi-

tecture is depicted in Figure 2.9.

2.4 RASP Placer and Router (RASPER)

RASPER is the initial attempt to solving problem [66]. An illustration of the architecture

modeling for RASPER is shown in Figure 2.10. Since the available FPAA architectures

at the time RASPER was developed were limited to RASP2.5 and RASP2.7, their require-

ments and limitations were of main concern in the development of the tool. Historically,

23

Figure 2.9. Routing structure of RASP2.8 architecture showing multi-level routing lines with different
capacitances for improved bandwidth and connectivity.

24

RASPER’s development can be divided into two phases: In the first phase, a classic ap-

proach was taken to develop a CAD tool with clustering, placement, and routing stages to

map randomly generated circuits built using the available FPAA component types. In the

second phase, the focus was on creating a CAD tool that takes the special requirements and

limitations of analog circuits.

(a) (b)

Figure 2.10. Illustration of graph-based FPAA modeling in RASPER. (a) 8X8 FPAA, (b) its graph-
based representation, where big and small nodes respectively denote the CABs and routing switches.

2.4.1 Clustering, Placement and Routing in Early Development Phases of RASPER

The first step in RASPER is the FPAA clustering stage, which groups the analog circuit

components together to form CAB clusters. The constructive CAB clustering algorithm

used consists of two steps:(i) cell ordering for clustering priority, (ii) CAB ranking and se-

lection. In a nutshell, cells are visited in a certain order and the best possible CAB to clus-

ter each cell with is searched while monitoring various constraints. The cells are ordered

according to the MHEC scheme, which is used in circuit partitioning for cut-size mini-

mization that effectively increases the use of local wires for routing [67]. In this scheme

nets are visited in ascending order of their sizes, where the size of a net is the number of

cells it connects. Clustering smaller groups first fills the CAB slots more slowly and it is

less likely to divide the cells from a single net into different CABs in the earlier stages of

25

clustering (i.e., when there are more slots available). In addition, it is easier to assign cells

in smaller nets to the same CAB. The motivation is to break as few nets as possible by

focusing on the smaller nets first, so that the total number of inter-cluster connections is

naturally minimized. Cells of each net visited are ordered in a random order. The net size

ties are again broken randomly.

Clustering stage is followed by the FPAA placement stage, which is the process of as-

signing each cluster to a physical CAB on FPAA. Placement stage consists of two parts;

namely, constructive placement and refinement. In constructive placement, clusters are

listed in descending order of their external connections (i.e., nets that have cells that are

both inside and out of the cluster) while CAB columns are listed in ascending order of

the wires that allow connection between different CABs. In RASP2.5 and RASP2.7 ar-

chitectures, these wires correspond to the vertical global wires. The limitations on these

vertical global wires that must be shared by all CABs are so severe that it is often not

possible to find a valid placement solution with existing number of vertical global wires.

To overcome this issue, the constraint for the number of available vertical global wires is

temporarily relaxed, and then the resulting violations are removed during the refinement

phase. Refinement uses simulated annealing (SA), which is a widely used stochastic opti-

mization method. SA-based refinement starts with an initial placement solution and allows

swapping the CABs associated with each cluster at every iteration. If the new placement

solution leads to a better arrangement (reduced number of vertical global wire use in this

case), the change is accepted. If the new arrangement has a higher cost than the previous

placement solution, the change is accepted with a certain probability, which reduces as the

refinement process goes, simulating the temperature drop in the actual annealing process

[68].

The routing stage is the final and the most trivial stage that takes place after placement

is complete. In this architecture, there is no difference between choosing any two vertical

local wires of the same CAB from each other. The same condition also applies to choosing

26

between two vertical global wires of the same column. So, there exists only one possible

route for every connection of placed cells if there is a feasible route. If all pins of a net

belong to the cells placed in the same CAB, a local wire is assigned to that net; otherwise,

a global wire is used. Routing is completed after determining the switches that connect the

selected wires of each net to each other.

To test the performance of RASPER at this stage, a set of circuits were created. These

circuits were not designed for realistic functions; they were just randomly connected com-

ponents selected from the pool of available FPAA component types. Since functional eval-

uation was not possible for these circuits, performance of the placement and routing was

evaluated based on the utilization of FPAA resources (CABs and wires) and the success in

minimizing the use of switches.

2.4.2 Simultaneous Placement and Routing in RASPER

The scheme used in early versions of RASPER has little success with real circuits and the

actual FPAA architectures. It is very difficult to satisfy the net constraints with the high

demand on and the scarcity of the vertical global wires. Without tracking the availability

of these wires, the clustering stage often gives outputs that are impossible for the placer to

fit on the real FPAA unless vertical global wire count is increased, and the refinement stage

can not always remove the violation of these constraints.

A solution to this problem is to associate each cluster with a physical CAB immediately

after it is created. This effectively combines the tasks of the clustering and the placement

stages. The main reason for using clustering is to reduce the number of components; there-

fore, the problem size for the placement step. Although by using a placement and routing

software we expect to increase the size of the circuits that can be implemented on the FPAA,

we can also assume that their sizes will never be comparable to that of the digital circuits.

The additive natures of noise and parasitic effects make it impossible to catch up with the

digital circuits in terms of component sizes; besides, the original intention for using analog

circuits is to replace the much larger digital circuits that do the same task. So, incorporating

27

the task of clustering into the placement step is not expected to have a huge impact on the

synthesis time when analog circuits are concerned.

Routing is also trivial with the available routing topology as mentioned in the previous

section. A set of placed component pins that belong to the same net can establish a valid

connection in only one way. In this sense, routing essentially can serve as a constraint for

placement rather than a separate step, so it is logical to combine them as well. Therefore,

RASPER was redesigned as a simultaneous placement and routing tool. The first place-

ment and routing results with actual circuits and architecture are also obtained after these

modifications. Some of the circuits that have been placed and routed using RASPER will

be presented in Section 3.1.

Placement and routing for analog design differs from digital. In digital design, parasitics

usually affect only the performance (speed) of the circuit. In analog design, they can have a

major impact on the overall functionality as well. Therefore, the effects of the parasitics on

the circuit performance are more crucial than in the digital case. What makes things worse

is that incremental analysis methods are not well suited for analog circuits. The effects of

the parasitics coming from placement and routing results have to be analyzed as a whole.

To monitor the performance of placed and routed circuits, RASPER was further modified

by adding parasitic extraction and post-routing simulation features. In addition, chip I/O

pins can also be described with different parasitic effects on the wires to reflect their distinct

effects on the circuit performance.

In the new version of RASPER, support for a new element type that is called as switch

element (SWE) is added. This element type was possible by taking advantage of using the

floating-gate switches in RASP2.5 and RASP2.7 architectures instead of the more tradi-

tional transmission-gate based or other switch technologies. As mentioned in Section 1.2,

it is possible to program a floating-gate transistor in a way that gives more control over the

voltage-current relationship of the switch. This allows utilization of the switch fabric as

part of the circuit rather than dead weight. RASPER recognizes the entry of SWE in the

28

circuit netlist and rather than matching it to a CAB component, seeks switches for this ele-

ment among all the routing switches. An example for how SWE can be used is illustrated

in Figure 2.11.

- +

Iin1 Iout1 Iout2

Figure 2.11. Illustration of switch elements (SWE) on a circuit. The encircled transistors are not
mapped into the matching CAB components, but implemented as the routing switches instead.

After every cell is associated with a CAB component and wires are associated with nets

and SWEs, an output file that contains the switch coordinates and associated current values

is generated to be used for the final stage of implementing the circuit on the FPAA. This

file is the final output of RASPER. There are three types of switches in the output file:

• Bias switches are used to set the bias currents for some FPAA components. These

components are analog building blocks rather than a single circuit element, and re-

quire a configuration value for operating in the desired range. Setting the bias current

of an OTA can be counted as an example. Floating-gate switches used for configuring

these circuit blocks serve to reduce the demand on I/O pins of the IC. Bias switches

need to be associated with a current value that determines the bias level of the related

circuit block.

• SWE, as explained above, uses switches from the routing switch fabric. Since pro-

gramming them to certain voltage-current relationships is desired, they are associated

with current values that contain programming information.

• Routing switches establish the connections between component pins and other com-

ponent pins or I/O pins. Among all switch types, only routing switches do not require

29

a current value, since the programming interface can automatically decide the appro-

priate gate charge they should be programmed to.

With all these modifications made in RASPER, implementing real circuits on actual

devices became possible for the first time. As a result, more realistic circuits were designed

to test placement and routing algorithms. Some of these circuits can be found in Section

3.2.1.

2.4.3 RASPER Placement and Routing Results

In the beginning of our work on physical synthesis for FPAAs, there was a lack of estab-

lished standard benchmarks suitable for use with the available component set. Initially,

there were attempts on generating random circuits to test RASPER; however, these circuits

were highly unrealistic, thus neither would reflect the nature of actual analog circuits nor

would be of any use in observing the impact of synthesis on circuit performance. Later,

a smaller set of realistic analog circuits were designed to test the success of RASPER.

Although replacing some circuit blocks with specialized components would enhance the

overall circuit performance, certain component types of RASP2.7 were avoided since their

functionality were not completely verified at the time of these experiments. Table 2.1

presents the resource usage of these analog circuits mapped to RASP2.7 using RASPER.

One thing that can immediately be observed is that no matter how many components and

nets the circuits have, the use of local routing is very limited. On the other hand, there is

a very high pressure on the use of some resources. These results imply that RASP2.7 may

not be very compatible with this set of circuits. It is quite possible that most circuits do not

obey the component ratios of the available CABs in this architecture, thus the local routing

resources were not be utilized well. Therefore, exploring and evaluating the fitness of ar-

chitectures for different circuit classes is very important for better utilization of the devices.

Detailed description and performances of these circuits will be presented in Section 3.1.

30

Table 2.1. Resource usage for several analog circuits mapped to RASP2.7 using RASPER.
circuit component net CAB hgwire vgwire vlwire switch

bpf 5 5 1 0 3 2 39
vco 15 15 10 7 23 0 574

dac8bit 9 19 9 10 31 0 364
wta-3way 13 14 7 12 17 0 426

2.5 Generic Reconfigurable Array Specification and Programming En-
vironment (GRASPER)

RASPER was developed to be somewhat specific to the interconnect topologies of RASP2.5

and RASP2.7 architectures. Having only two types of wires to connect to the component

pins within each CAB enforces only one routing solution for any given placement arrange-

ment of the components. RASP2.8 introduces the bridge wires that allow connections

between the new segmented wire types of various spans in addition to the existing local

wires. This change dramatically increases the routing possibilities, making it impossible to

use the simultaneous placement and routing method in RASPER.

The data structure based on the CAB-wire interactions is also insufficient to model the

diversified interconnect topology of RASP2.8. In RASPER, wires can have membership of

either a column of CABs or just a single CAB, which can not address the mesh style wires

that span two CABs along vertical and horizontal orientations. In RASPER, switches are

not represented explicitly, but are extracted from a set of wires that are occupied by a net

after placement and routing. With the increased number of wire connection possibilities, it

is not possible to extract a unique set of switches from a given set of wires.

Figure 2.12. Wires-switch relationship on a reconfigurable architecture. GRASPER uses a model where
wires are represented as vertices and switches are represent as edges.

31

Figure 2.13. Component pin-wire connection modeling in GRASPER. This model allows instant deter-
mination of terminal wires (source/sink) for routing immediately following placement.

GRASPER uses a different RRG model that depends on capturing the wire-switch re-

lationship as a vertex-edge pair in a simple undirected graph as illustrated in Figure 2.12.

In this undirected simple graph model, every edge must connect always two distinct ver-

tices, and a vertex connects to another vertex through one edge. Although edges can exist

between two and only two distinct vertices, there is no limitation for the number of edges

connected to each vertex. This reflects the physical wires and switches perfectly, as each

switch has to exist between two and only two wires whereas wires don’t have a limitation

on how many wires they can connect to via switches.

In this model, CABs are no longer part of the RRG and not involved in placement and

routing; instead they serve as organizational groups for components. Components are di-

rectly involved in setting the device and net constraints. Figure 2.13 shows how each com-

ponent pin is paired with a RRG vertex that corresponds to a physical wire connected to

the same component pin in actual FPAA. So, all interaction between placement and routing

is captured via the component pin-wire pairings created from the architecture description.

This is a simple yet effective model that allows many algorithms to be employed easily for

placement and routing. As an added benefit, it can be used to specify arbitrary connections,

which allows capturing and constructing a wide range of reconfigurable architectures shar-

ing the underlying principle that can be summarized as: “every switch can connect two

and only two wires.” All topologies that follow this principle can be represented using this

RRG model; therefore, a wide range of continuous-time FPAAs can be supported without

32

having to change the tool. We can specify any FPAA architecture generically using a de-

vice configuration file, the feature which inspired the G(eneric) in the name of GRASPER

stands for.

A similar model has been used in wireC [69], Triptych [55], and Versatile Place and

Route (VPR) [52] FPGA placement and routing tools. VPR is a popular FPGA place-

ment and routing tool that offers flexibility in supported architectures thanks to the RRG

model described above that can capture arbitrary switch-wire connections. VPR uses a

technology-mapped netlist and a text-based FPGA architecture description file as input to

generate a placement result for the circuit using simulated annealing [68]. In addition, VPR

can continue to perform global routing or a combined global/detailed routing based on the

Pathfinder negotiated congestion algorithm [70] for this placement result, or a pre-existing

placement file that is read in.

Although limited to multi-driver routing approach, and a homogeneous CAB structure

with wire segments that span only one CAB until version 5.0 [71], its flexibility made VPR

the leading academic and commercial architecture exploration tool. VPR’s success and

widespread use by the FPGA research and design community has even secured a place to

this tool in the SPEC2000 benchmark suite. However, it is designed primarily taking FPGA

architectures into account, so does not really use the potentials of the RRG to its full extent.

Degrees of freedoms granted when designing the interface took only the cases one would

encounter in FPGA design. Although heterogeneous component support, which consists

of additional digital components such as memory and multiplier, was added recently [71],

VPR doesn’t have transistor level simulation support yet; only digital delay calculation

models, and cannot support the CAB types we need. VPR allows only a regular rectangular

array of one block per each grid on a regular 2-dimensional array.

VPR input interface allows blif and verilog formats. These formats, as already dis-

cussed in Section 2.2, are not suitable for effectively describing analog circuit netlists,

which is the main objective in this project. The range of interconnect topologies and CAB

33

array geometries supported by the GRASPER interface are wider. One difference between

the FPGA-based earlier tools and GRASPER is that the FPGA-based tools capture the

wire-switch relationship as a directed graph whereas GRASPER uses an undirected graph,

since analog switches of interest are expected to be bidirectional. On the other hand, if

unidirectional switch support is of concern, it is possible to extend the undirected graph-

based data structure to a directed graph by replacing the undirected edges with two directed

edges of opposite polarity. By doing this, all paths that could be found in the undirected

graph will be available in the directed graph as well. Figure 2.14 illustrates this concept.

This may be a useful addition when a mixed-signal analog-digital architecture support is

considered in the future. Although it was not the main objective initially, it is possible to

extend GRASPER to place and route digital circuits as well, but VPR does not have support

for analog circuits.

Figure 2.14. Converting an undirected graph to a directed graph. Each edge in the undirected graph
is replaced with two directed edges, so that it is possible to find in the directed graph all the paths that
exist in the undirected graph.

2.5.1 Placement in GRASPER

Because of the increased wire type variety, placement results no longer enforce a unique

routing solution in GRASPER. Therefore, placement and routing are divided into separate

steps again.

In a similar fashion to RASPER, GRASPER placement also uses MHEC-based cell

ordering to maximize the use of local wires for routing. The details for this ordering is

already mentioned in Section 2.4.1. Unlike RASPER, GRASPER lets only the components

that match the cell type to be visited instead of the CABs. Each component that is feasible

34

for placement is ranked for placing the current cell, and the highest rank component is

selected for placement after all components are visited.

Each pin of a CAB component is associated with wires that are connected to the routing

resource graph as depicted in 2.13. Therefore, when a cell is placed into a CAB component,

net information is instantly transferred to these pin wires. As pins of a net are placed on

various locations on the chip surface, a bounding box, which is called as netbox, begins

to form defined by the positions of the wires associated by this net. The larger this netbox

becomes, the more distance is likely to be traversed by the wires in the routing phase. In

addition, since larger netboxes may occupy more routing resources, they may also increase

the chances of congestion. This concern brings another placement objective, which is the

minimization of the sum of netbox sizes.

The quality of the placement results can be influenced in a certain direction to achieve

different goals. Depending on the placement priorities, candidate components can be

awarded or penalized in different ways during the ranking process. In the current imple-

mentation of GRASPER, increased CAB utilization is aimed and awarded. For a different

case, this may not be an important issue and the award can be reduced relative to a different

placement objective.

2.5.2 Routing in GRASPER

During the GRASPER placement step, each placed component pin that is connected to a

wire is associated with a net defined in the circuit graph. These wires act as the terminals

distributed to various edges of the RRG. The objective in routing is to find disjoint min-

imum spanning trees (MST) within the RRG for all nets where each terminal of a net is

also a member of that net’s MST. The concept of routing MST on an undirected graph is

illustrated in Figure 2.15.

As mentioned in Section 2.5.1, net congestion can cause problems when routing each

net. To reduce the chances of net congestion, netbox sizes are minimized during the place-

ment phase. The order nets are chosen for routing also affects the success of routing. If

35

Figure 2.15. Grasper routing on the undirected routing resource graph. Source and sink terminals for
each net are determined at the end of placement, routing establishes a minimum spanning tree that
connects all terminals together.

nets that have larger netboxes are routed first, chances of congestion will increase for the

subsequent nets. To avoid this, nets are listed in ascending order of size of their netboxes

and routed in this order.

GRASPER routing uses the maze router approach based on Dijkstra’s shortest path

algorithm [72]. Maze router has two important strengths: first, it guarantees to find a

connection between two terminals if it exists; and second, it guarantees minimum path. Its

weakness lies in its tendency to radiate toward all directions from a source terminal, which

causes large memory demands and time consuming operation. However, these weaknesses

will not be as effective for the reconfigurable arrays as in the case of full custom design,

because of the limitation on the number of the routing resources and their connections.

In addition, the wires corresponding to the vertices in the RRG of GRASPER correspond

to longer distances than the equivalent grids in the full custom design. This reduces the

number of layers or wavefronts that are created at every propagation, resulting in finding

the target terminals faster. This simple method works effectively in GRASPER.

The first step for routing each net is to determine the source and sink (target) terminals.

Since there is no strongly defined signal flow direction in analog circuits, any wire can

be selected as the source terminal. To minimize the number of propagations in RRG,

GRASPER chooses the source terminal as the wire that has minimum distance to the center

36

of the netbox.

The next step in routing is wire labeling. In the labeling step, layers of wires are formed

starting with the source layer that consists of the source terminal alone. In the beginning,

source layer is the top layer since it is the only layer. Then, all wires adjacent to the wires

in the top layer are labeled with a value that reflects the total distance from the source sink

and added into the next layer. This can be a value derived from the geometric distance or

wire capacitances involved depending on how routing cost is modeled. GRASPER cur-

rently uses the number of switches on each wire as the cost of wire. This count gives an

approximate equivalent to the wire capacitances as well. Of course, only wires that are not

already labeled or are not used for routing other nets can be labeled. When there are no

more wires available for labeling among the adjacent wires of the top layer, next layer is

moved on top of the layers becoming the new top layer. Propagation of wires and adding

new layers continue until all sink terminals are labeled.

The final step in routing is backtracing from the sinks to the source. Backtracing is

applied to one sink terminal at a time. Among the labeled adjacent wires of the sink wire,

the wire with the least label value is chosen and added to the path. This continues until

one of the adjacent wires is a wire that has already been added to the routing path for the

current net. Obviously, source terminal is added to the routing path from the beginning, so

that backtracing the first sink terminates at the source terminal wire. The same process is

repeated for the remaining sink terminals.

2.5.3 GRASPER Placement and Routing Results

GRASPER returns an output file that is essentially a list of switch coordinates used by the

programming interface to program routing switches (RSW), bias or configuration switches

(CSW), and switch elements (SWE). To observe the GRASPER routing results visually,

a program called Field Programmable Analog Array Routing and Analysis Tool (FPAA

RAT) can be used. FPAA RAT was developed by David Abramson and Scott Koziol in the

CADSP Research Group of Georgia Tech. FPAA RAT can be used for either viewing the

37

wires used for routing the placed components on FPAA, or for changing the switch list by

manually adding or removing switches on the user interface. FPAA RAT currently supports

RASP2.8 architecture, but is being extended to support future ICs in the RASP family.

Figure 2.16 demonstrates the GRASPER placement and routing results obtained for an 8th

order elliptic band-pass gmC filter (ebpf8) that contains 25 OTAs and 16 capacitors. Since

RASP2.8 contains at most one OTA in each CAB, 25 CABs had to be used to complete the

placement. Placement and routing statistics for this circuit as well as three other band-pass

gmC filters are presented in Table 2.2.

Table 2.2. Placement and routing statistics for 8th order band-pass gmC filters mapped to RASP2.8
using GRASPER.

circuit components nets CABs wires RSW CSW
bbpf8 33 12 17 141 128 17
c1bpf8 35 13 19 145 131 19
c2bpf8 41 13 25 179 165 25
ebpf8 41 13 25 179 165 25

2.5.4 SWE Routing in GRASPER

SWEs are also circuit elements of special interest in the routing stage. By definition, each

SWE connects two distinct nets with a routing switch programmed to the characteristics

desired by the user. Since SWEs do not correspond to actual CAB components but are only

part of the routing fabric, they can not be dealt with during the placement stage; and can

only be realized during the routing stage. Routing a SWE is in fact establishing a routing

path between two disjoint MST for routing two different nets. If both nets connected to

a SWE are already associated with at least one wire, a routing path can be established

between wires of each SWE terminal in a similar fashion to routing the other nets, marking

one of the switches on the path as the intended SWE. This algorithm works only when all

net terminals are connected to a wire; therefore, SWE routing is performed as the last step

to wait until all nets are routed and their wires are established.

38

Figure 2.16. GRASPER routing results for an 8th order elliptic band-pass gmC filter as viewed by
FPAA RAT.

39

The algorithm described above cannot complete SWE routing for all circuits. Take the

diffusor circuit illustrated in Figure 2.17 as an example. In this circuit, three of the nets

(4, 6, and 8) are not connected to any CAB components or an I/O pin; therefore, they are

floating nets and cannot be routed using the method described above. A floating net is a

net in the circuit that is not associated with any wires before the SWE routing stage. In this

case, all SWEs that do not have a floating net are routed first, followed by the SWEs that

have one floating net only. To route a SWE with one floating net, it is sufficient to select

a switch that is connected to any wire that is associated with the non-floating net of that

SWE, and has a wire that was not already used for routing another net on the other side.

This wire on the other side of the selected switch is the previously floating net of the SWE,

which is no longer a floating net since it is associated with a wire now. SWEs with two

floating nets cannot be routed before associating at least one of their nets with a wire.

Vdd

1

9

7

5

3

8

6

4

2

Figure 2.17. A diffusor circuit with one PFET and 7 SWEs. Nets 4, 6, and 8 are floating nets, since they
are not connected to I/O pins or any CAB components.

To complete SWE routing using the methods described above, it is necessary to order

the SWEs in ascending order of the number of floating nets they have. SWEs with no

floating nets must be routed first, followed by the SWEs with only one floating net. As

40

SWEs are being routed, some floating nets will become non-floating nets, so SWE routing

order must be updated for those SWE that are connecting to these affected nets. Eventually,

there will be no SWEs that have two floating nets, and it will be possible to route all SWE

this way.

Since using the routing switches as components has been possible only with the floating-

gate FPAAs, the problem of SWE routing has not been addressed and solved previously.

Therefore, SWE routing algorithm is a novel contribution of this work, which leads to a

significant increase in the utilization of the switch fabric.

2.5.5 GRASPER Placement and Routing Results for Vector Matrix Multiplier (VMM)
Circuits

In this section, the placement and routing efforts for the vector matrix multiplier (VMM)

circuits are summarized. VMM circuits demonstrate how the switch fabric can be utilized

as active computation elements, which is a unique feature of the floating-gate based FPAA.

These circuits can be built using only 1 OTA for each row of the coefficent matrix, only

requiring switches to store coefficients in different columns. Figure 2.18 depicts a 2*2

VMM circuit that has 2 OTAs and 2 SWEs to the left of the OTAs for receiving the input

signals in current mode, and 4 SWEs on the right side that store the coefficients for the

matrix multiplication. The number of SWEs on the right side of the OTAs must be equal

to the multiplication of number inputs and outputs, whereas the number of OTAs, and the

number of SWEs to the left of the OTAs are equal to the number of inputs. The operation

of the VMM circuits built using SWEs are detailed in previous studies [73].

One can see the rapid increase in switch requirements as the size of VMM grows. Incor-

porating the SWE routing algorithms described in Section 2.5.4, GRASPER was initially

able to route a maximum size of 10*10 VMM circuits as illustrated in Figure 2.19. One ob-

servation made on these results was the presence of routing congestion in a certain portion

of the IC while other regions remained unused. This was a direct result of the placement of

OTAs, which was highly affected by the I/O pin choices, which had the tendency to cluster

41

- +

Iin1

- +

Iin2 Iout1 Iout2Vref

Vref

Figure 2.18. A 2*2 VMM circuit that uses 2 OTAs and 6 SWEs.

to a certain corner of the IC. To balance the OTA placement, the I/O pins in the circuit

netlist were reordered, so that they were spread more evenly across the IC. The immediate

effect of reordering was the ability to route 14*14 VMM circuits, which is illustrated in

Figure 2.20. This routing result left less unused areas on the IC, although it was observed

that the OTAs still had the tendency to be placed toward the bottom left corner of the IC,

increasing the congestion in this area. This effect was caused by the CAB ranking when

placing the OTAs, which favored the order followed when ranking the CABs. Finally, alter-

nate CAB rank orderings were introduced; where it is possible to rank CABs from bottom

left to top right or vice versa, resulting in a tendency to place CABs to either corner. A

third ordering scheme alternates between these two orderings to further balance the OTA

placement, and achieves successful routing of a maximum size of 15*15 VMM circuits, as

illustrated in Figure 2.21. Placement and routing statistics for each of these VMM circuits

mapped to RASP2.8 using GRASPER are presented in Table 2.3.

42

Figure 2.19. GRASPER routing results for a 10*10 VMM circuit as viewed by FPAA RAT.

Table 2.3. Placement and routing statistics for different sized VMM circuits mapped to RASP2.8 using
GRASPER.

circuit components nets CABs wires RSW CSW SWE
vmm10*10 10 33 10 107 74 10 110
vmm14*14 14 45 14 215 171 14 210
vmm15*15 15 48 15 248 200 15 240

43

Figure 2.20. GRASPER routing results for a 14*14 VMM circuit as viewed by FPAA RAT.

44

Figure 2.21. GRASPER routing results for a 15*15 VMM circuit as viewed by FPAA RAT.

45

2.6 Impact of the Placement and Routing Tool on FPAA Research

Having an automated placement and routing tool makes the FPAA technology more ac-

cessible. Users of FPAA should be focused on developing analog systems for performing

high level tasks. GRASPER provides an abstraction of the routing infrastructure from the

users, so that they don’t have to deal with the low level tasks such as optimum placement

of components on the CABs or switch list generation. Design and implementation of more

complex systems is only possible when the users can be relieved of such low level tasks.

With the confidence developed by building and testing larger systems on the FPAA,

the architecture research can also be pushed forward. The generic architecture support

of GRASPER has also been useful in developing new architectures. Currently, a set of

architectures commonly named as RASP2.9 is under development, and they are also sup-

ported by GRASPER by means of a device configuration file. RASP2.9 in general uses

similar CAB structure to RASP2.8, but with an array of 6 rows and 14 columns, and some

variations of RASP2.9 uses reduced number of switches on the crossbar. Architecture

configuration files for some architectures in the RASP2.9 series have been written and suc-

cessfully tested. GRASPER can also take the resources and the process technology of a

new FPAA into account, and incorporates them into the placement and routing, followed

by the parasitic extraction; therefore, allows evaluation of new architectures by simulation

of circuits on these architectures even before the IC is fabricated. This will make planning

new architectures easier and reduce the costs of designing new FPAAs.

At present, GRASPER is being used by the students of the CADSP Research Group

and also for educational purposes by the students in various courses in Georgia Tech, which

makes about 35-40 student users at the time. In addition, it has also been used in workshops

by attendees from different universities and research institutions. The tool has served well

in these platforms, and the feedback received from the users has been used to improve its

usefulness and robustness. When the FPAA hardware platforms become commercialized,

GRASPER will be used by a wider group of people and institutions for both applications

46

and research.

47

CHAPTER 3

SIGNAL INTEGRITY AND PERFORMANCE OPTIMIZATION

Parasitic components coming from routing using non-ideal interconnects have an ad-

verse effect on the performance of a circuit implemented on any reconfigurable device. In

digital design this effect may be observed as reduced performance, but in analog design

even the functionality may be compromised. Interconnects on the circuit path inevitably

deteriorate the signal integrity; therefore, the effects of interconnects on the circuit per-

formance must be studied carefully and taken into account to minimize this deterioration.

The need for an automated PNR tool becomes more obvious when these tasks that are very

difficult to manually perform are considered. This justifies the use of such a CAD tool for

the relatively smaller analog circuits.

Although circuits can be directly evaluated on the FPAA after PNR, being able to know

immediately by simulation without having to map every attempt on the FPAA is more

convenient, faster, and more suitable for automation. This is especially useful when it is

desired to optimize the circuit performance with little or no human interaction.

Another use of evaluating circuits is for debugging purposes. One can not probe into

the intermediate nets in a circuit when it is implemented on the FPAA. But it is possible

to track all points in the design using a simulator, which may give us valuable hints in

troubleshooting.

Finally, it is useful to have this evaluation ability for the architectures that are not readily

available yet. Chapter 4 presents a systematical method to test how the performance of

various circuits on conceptual architectures can be evaluated before even designing and

fabricating those architectures.

48

3.1 Parasitic Extraction in RASPER

In RASPER, each interconnect is defined by a combination of switches and wires associ-

ated with nets and switch elements. The wires are called in order of the most local to most

global as horizontal local (hl), vertical local (vl), vertical global (vg) and horizontal global

(hg) wires. The scopes of different wire types have been described in Section 2.3.1. Each

wire is connected to the other wires through a switch while the wires themselves form a

tree with the most global wire being the root and the most local wires being the leaves.

Each wire type is saved in an interconnect library as a subcircuit along with the switch.

The advantage of using this flexible library structure is that it can easily be replaced by

another library containing different switch and wire models if desired and the change in the

behavior can be observed. In the simple interconnect model used in this work, each switch

is approximated by a resistor and each wire by a capacitor. Users are welcome to improve

these models to any level of accuracy they desire keeping in mind the cost of increased

simulation times.

To reflect the impact of wires and switches on the circuit performance, a subcircuit is

generated for each net as depicted in Figure 3.1. This subcircuit as a block replaces the

net in the actual circuit, and all component pins that used to be connected to the original

net are connected to this block instead. Simulating this circuit in SPICE, synthesis results

can be verified with parasitic effects included. Incorporation of the interconnect model in

simulation helps in troubleshooting, as well. It gives access to every node in a circuit to

determine the causes of a problem after the circuit is synthesized. This wouldn’t be possible

on the programmed chip because of limited availability and the parasitic effects of I/O pins.

3.1.1 Measurements vs Simulations Using a Band-pass Filter

Seeing a comparison of circuit measurements against simulations is helpful to verify the

interconnect model developed for RASPER. Filters are a class of commonly designed ana-

log circuits, so the band-pass filter (BPF) presented in Figure 3.2 is implemented to do

this measurement-simulation comparison. This filter uses a simple topology that consists

49

(a) (b)

cm
p1

cm
p2

cm
p3

Cvl

Chl Ron

Ron Ron

Ron Chl

Chl Chl cm
p3

cm
p1

cm
p2

Figure 3.1. Subcircuit block that replaces the interconnect in the circuit.

1.0 p
1.0

p

+
− 1.2 V

1mVp-p
0Voffset
38 kHz

10nA

10
nA

2
uA

V
dd

V
dd

Vdd

+
− 2.4 VVdd

+

-
+

-

+ -

10

9

11

Figure 3.2. Band pass filter made from a cascade of a high-pass and a low-pass filter.

of only two passive capacitors and three OTAs each of which being used as a high-pass,

low-pass and buffer stages. Each stage allows control of the corner frequency through the

conductance (Gm) of their respective OTAs using the bias currents, so the design param-

eters can be easily adjusted. It is also a function that is highly reused in more complex

designs; therefore, a good candidate to conduct some experiments on.

One should keep in mind that the simulations may not completely predict the actual

implementations of analog circuits in hardware. Various factors influence this deviation,

such as process variations, mismatch, etc. Even the switches at a certain region of the chip

50

10
3

10
4

10
5

10
6

−45

−40

−35

−30

−25

−20

−15

−10

−5

Frequency (Hz)

G
ai

n
(d

B
)

Ideal

Routing 1

Routing 2

Routing 3

Figure 3.3. Simulations of the BPF circuit for ideal interconnects (ideal), all OTA in the same CAB
(routing1), all OTA in the same column but in different CABs (routing2), and all OTA in different
columns (routing3).

10
3

10
4

10
5

10
6

−40

−35

−30

−25

−20

−15

Frequency (Hz)

G
ai

n
(d

B
)

Routing 1
Routing 2
Routing 3

Figure 3.4. Measurements of the BPF circuit for all OTA in the same CAB (routing1), all OTA in the
same column but in different CABs (routing2), and all OTA in different columns (routing3).

51

10
3

10
4

10
5

10
6

−45

−40

−35

−30

−25

−20

−15

Frequency (Hz)

G
ai

n
(d

B
)

Routing 1
Routing 2
Routing 2a
Routing 2b

Figure 3.5. Simulations of the BPF circuit for all OTA in the same CAB (routing1), and all OTA in the
same column but in different CABs (routing2). The second configuration is modified to approximate
the first configuration by adjusting the low-pass corner only (routing2a), or both corners to achieve the
same Q factor at a lower gain (routing2b).

10
3

10
4

10
5

10
6

−40

−35

−30

−25

−20

−15

Frequency (Hz)

G
ai

n
(d

B
)

Routing 1
Routing 2
Routing 2a
Routing 2b

Figure 3.6. Measurements of the BPF circuit for all OTA in the same CAB (routing1), and all OTA in the
same column but in different CABs (routing2). The second configuration is modified to approximate
the first configuration by adjusting the low-pass corner only (routing2a), or both corners to achieve the
same Q factor at a lower gain (routing2b).

52

may behave slightly different from the switches in another region. However, one would

care less about the accuracy so much as functionality, since the accuracy of the simulations

depends heavily upon the transistor models matching the actual devices. The intention is

to give the user the ability to predict the outcome of the circuit, a tool that can be used in

troubleshooting and later as a guide to optimization. The tool can also be used to determine

the effect of the routing parasitics upon the ideal circuits, which allows the user to adjust

the circuit topology or biases to compensate.

The initial results displayed in Figures 3.3 and 3.4 are intended to show comparisons

between three different routing solutions for the same circuit. Among these, routing1 is a

solution where all components are packed closely in one CAB. In routing2 they are dis-

tributed into different CABs of the same column. Finally in routing3 they are placed into

different columns which will give the longest distance between them. A simulation of the

circuit with actual FPAA components and ideal interconnects is also given as the ideal case

in Figure 3.3. Note that in the current FPAA technologies, total delay in a path is strongly

dominated by the switch parasitics rather than wire length; therefore, once a connection is

made to any other column, it suffers the most degradation [6]. As one can observe from

Figures 3.3 and 3.4, simulation results follow the actual measurements closely with mi-

nor errors. Since the interconnect model is modular, it can easily be replaced by a more

accurate model to further reduce the deviation depending on the required level of accuracy.

Circuit performance between various routing solutions can be significantly different for

a given set of bias conditions, as seen in Figures 3.3 & 3.4. Some of this may be com-

pensated by tuning the corner frequencies via bias currents of the OTAs. In Figure 3.5,

the configuration in routing2 is modified in two ways in an attempt to reach the routing1

performance. The first solution simply adjusts the low-pass corner to better match the orig-

inal shape of the routing1 configuration. The second solution adjusts both corners to better

match the corner frequencies and Q of the routing1 frequency response, except with a lower

gain. The same configurations are also simulated using the netlists generated by RASPER

53

and displayed in Figure 3.6. Table 3.1 summarizes some of the design metrics used to

evaluate the various implementations and gives a comparison between the simulations and

measurements described above. From these results, one can observe the reduction in the

corner frequency and gain while Q is preserved as the routing configuration changes from

routing1 to routing3. This is because of the fact that OTAs are placed most distant from

each other in routing3 and closest in routing1, reflecting the higher impact of the parasitic

interconnects for the more distant placement configurations. Obviously, corner frequen-

cies and gains of all the routing configurations are much lower than the simulation results

with ideal interconnects. The results for routing2a and routing2b demonstrate how rout-

ing2 configuration can be compensated to get corner frequency values closer to routing1

configuration by adjusting the OTA bias currents, at the expense of either Q or gain values.

Table 3.1. BPF metrics from simulation and measurement results, where center frequency is in kHz,
and gain in dB.

simulation
ideal route1 route2 route3 route2a route2b

fc 46.4 11.1 3.9 2.1 14.0 12.9
gain -5.75 -18.32 -27.30 -32.88 -22.06 -26.19
Q 0.504 0.501 0.501 0.504 0.259 0.495

measurement
route1 route2 route3 route2a route2b

fc 21.4 6.2 2.0 22.2 21.4
gain -14.41 -24.51 -30.94 -21.56 -23.77
Q 0.452 0.451 0.406 0.200 0.464

3.1.2 Parasitic Extractions of Sample Circuits in RASPER and Their Simulation
Results

Parasitic extraction and simulation results have been obtained for several other circuits as

well. Here, the effects of the interconnect parasitics on the circuit performance for an 8-bit

digital-to-analog converter (DAC), a voltage controlled oscillator (VCO), and a winner-

take-all circuit (WTA) were studied.

The DAC implemented here is a binary weighted type, where SWEs are put into use for

programming the binary currents. Figure 3.7 depicts the circuit. Simulations were run on

54

the circuit before and after synthesis. Among various design metrics, finding the settling

time that results in a conversion rate and integrated nonlinearity (INL) was of main interest.

To find the INL, an ideal model of a DAC has been simulated with the actual circuits, and

the output voltages have been compared. According to the simulation results in Figure 3.8,

the metrics in Table 3.2 have been obtained. These results indicate that the precision of the

DAC in this case is preserved when placed and routed on FPAA; however, it runs 5 times

slower.

640 nA1.28 uA

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

+

-
10

5
uA

Vdd
11

Vdd

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

40 nA320 nA 160 nA 80 nA 20 nA 10 nA

7

6

5

4

0

1

2

3

d7

d6

d5

d4 d3

d2

d1

d0

vref vout

Vdd

+
− 2.4 V

12
3 megΩ

Figure 3.7. 8 bit DAC implemented with binary weighted SWE.

Table 3.2. DAC metrics
metric pre-synthesis post-synthesis
LSB 5.34 mV 5.34 mV
-INL (LSB) -1.4 -1.5
+INL (LSB) 0.07 0.15
settling time (µs) 4.2 20

The VCO depicted in Figure 3.9 uses the ring oscillator structure, where each inverter

is biased to a current controlled by the gate voltage of a current mirror. Increased current

levels allow a higher frequency of oscillation and vice versa. The current flowing through

the mirror responds to the gate voltage nonlinearly, further increasing the dynamic range of

55

Figure 3.8. Analog conversion of a sweep of digital values from 0 to 255 in an 8 bit DAC with (a) ideal
interconnects and (b) synthesis parasitics included.

56

the oscillation frequency. Phase noise is an important metric in the characterization of an

oscillator. However, since it is not possible to determine this metric through SPICE analy-

sis, showing how the routing parasitics slow down the oscillation frequency was reported,

as demonstrated in Figures 3.10 and 3.11.

12 W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

+

-

2 uA

10

11

Variable Ring Oscillator Level Shifter

Vctrl

Vref

osc_out

+
− 1.2 V

Vdd

Figure 3.9. VCO with adjustable current inverters.

Winner-take-all circuits are common in analog signal processing because they can be

used as a current comparator for an arbitrarily large number of input currents. Figure 3.12

shows the WTA circuit used for our analysis. The circuit determines which input current

is the largest and outputs a voltage near the supply rail indicating the winning current

input. An important metric of this circuit therefore is the smallest current difference that

the WTA circuit responds to correctly. Simulation of the pre-synthesis circuit reveals that

the discrimination ability is about 0.4 nA. Figure 3.13a shows the WTA circuit outputs as

the result of a one-hot sequencing of the input currents for decreasing current differences

of 0.4 nA, 0.2 nA, and 0.1 nA respectively. The desired result is for each output to take

turns going high. The figure shows that for the smaller differences, the WTA circuit output

does not have the desired result. A similar simulation was done for the post-synthesis

case, but instead use larger current differences of 4 nA, 2 nA, and 1 nA in Figure 3.13b.

In these simulations, the current discrimination ability was observed to be about 10 times

57

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0

0.5

1

1.5

2

2.5

Time (s)

Id
ea

l O
ut

pu
t (

V
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

Time (s)

S
yn

th
es

iz
ed

 O
ut

pu
t (

V
)

Figure 3.10. VCO output at Vctrl = 2.05 V where the oscillations just begin. Frequency of oscillation
drops from 29 Hz to 0.5 Hz when parasitics are included.

less for the synthesized circuit. It should also be noted that the synthesized circuit output

no longer reflects the symmetry seen in the pre-synthesized case as a result of the added

routing components.

3.2 Performance Optimization Using Simulated Annealing

The interconnect models for RASP2.5 and RASP2.7 architectures defined in Section 2.3.1

show that the FPAA has three basic types of wires each carrying different parasitic values

into the placed and routed circuit. It is possible to model routing interconnects by replac-

ing each net between neighboring component pins with an equivalent subcircuit consisting

of RC branches that connect its pins to each other to reflect the wire and on/off switch

impedances as depicted in Figure 3.1. Simulation of the circuit with and without this sub-

circuit allows observing the impact of routing parasitics on the circuit performance. The

58

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

Time (μs)

Id
ea

l O
ut

pu
t (

V
)

0 5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

Time (μs)

S
yn

th
es

iz
ed

 O
ut

pu
t (

V
)

Figure 3.11. VCO output at Vctrl = 1.45 V where the maximum frequency of oscillation for synthesized
circuit is attained at 167 kHz. Pre-synthesis circuit oscillates at 4 MHz with the same input.

W=6u
L =2.1u

W=6u
L =2.1u

Vdd1.5uA1uA

V
dd

Iin
1

vout1

W=6u
L =2.1u

Iin
2

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

Vdd

Iin
3

W=6u
L =2.1u

W=6u
L =2.1u

W=6u
L =2.1u

Vdd

W=6u
L =2.1u

0.4uA
0.5uA

Vdd

vout2 vout3

Figure 3.12. Schematic for a Winner-Take-All circuit with three current inputs.

accuracy of the simulation results depend on the sophistication of the employed models. In

[74], a similar model has been used to compare simulation results against measurements

59

(a)

(b)

Figure 3.13. Winner-Take-All circuit simulation results for (a) pre-synthesis and (b) post-synthesis cir-
cuit netlists where one of the three input currents is larger than the other two inputs. Input current
differences are 0.4 nA, 0.2 nA, and 0.1 nA for the pre-synthesis circuit where the outputs can be distin-
guished reliably for only 0.4 nA difference; while input current differences are 4 nA, 2 nA, and 1 nA
for the post-synthesis circuit where the outputs are correct for only 4 nA difference.

60

from a synthesized circuit to show that simulation and measurement results are well cor-

related. This level of accuracy is sufficient for use by our optimization engine. Our tool

can synthesize netlists for different placement and routing configurations to be simulated

by SPICE and can extract metrics of interest from the simulation results. Although using

an integrated simulator would increase the tool performance, employing an external sim-

ulator brings more flexibility in adopting different simulators as they improve in accuracy

and speed.

While routing parasitics mostly affect the performance in digital domain, they may have

a serious impact even on the functionality of an analog circuit. Therefore, the emphasis here

is mainly placed on optimizing the performance to meet design requirements rather than

achieving the most dense packing of the components. During the processes of placement

and routing, each circuit net is associated with a different wire type in FPAA. An analog

design expert can easily recognize which nets are more sensitive to the routing parasitics

than others for a given circuit, and will consider this for making decisions when assigning

wire types to each net. The same behavior can be automated by simulating the circuit with

different wire types assigned to each net using the interconnect model described above and

comparing the performance metrics of interest. If a net is more sensitive to the routing

parasitics, metrics obtained by simulating that net assigned to different wire types will

deviate more from the metrics of a reference circuit compared to a less sensitive net. A

numerical value was extracted from this deviation to generate a net-sensitivity matrix where

each entry corresponds to the cost of using a wire type for a net when routing the circuit.

In the FPAA with three wire types that was used in this study, the net-sensitivity matrix is

of size 3 − by − n for a circuit with n nets.

A reference circuit to compare the simulations of different net-wire assignments is nec-

essary for the extraction of the costs in the net-sensitivity matrix. Ideally, one would prefer

to use the wires with smallest parasitics for every net, choosing a target circuit configu-

ration as one that uses only local interconnects for every circuit net. This may not be the

61

case for every circuit since a higher capacitance may sometimes be required for certain

nets when FPAA CABs lack large drawn capacitors to satisfy the circuit’s requirements.

Also, nets connected to the FPAA I/O pins are limited to certain wire types; therefore, they

may not be assigned to the smallest capacitance wire type. Considering all these factors,

a reference circuit configuration which adds the approximate effects of the non-ideal inter-

connects while ignoring device and routing constraints is used to obtain target performance

metrics that will guide the tool during circuit refinement. In the net-sensitivity matrix, one

entry for each net belongs to the target circuit configuration, so these entries must be 0. To

find the remaining 2n entries, the circuit is simulated with the remaining two wire types of

each net while keeping all other nets in the reference circuit configuration, populating the

whole matrix in at most 2n + 1 simulations.

The user may specify the optimization objectives in three directions: equalization, max-

imization, and minimization. Each direction uses the formulas given below to compute the

net-interconnect costs associated with the metrics of interest:

Equalize : ci jt =
|Xi − xi jt|

max(1, |Xi|)

Maximize : ci jt =
Xi − xi jt

max(1, |Xi|)

Minimize : ci jt =
xi jt − Xi

max(1, |Xi|)

where xi jt is the value of metric i when net j is connected to wire type t, Xi is the target

value for metric i and ci jt is the interconnect cost for metric i of net j connected to wire type

t. If multiple design objectives are specified at the same time, the overall interconnect cost

of net j for wire type t (nc jt) can be found as the weighted sum of ci jt for each metric i:

nc jt =

m∑
i

wi ∗ ci jt (3.1)

where wi is the weight of metric i and m is the number of metrics used for optimization.

During the initial placement and refining phases, net-interconnect cost of net j can be found

by substituting the value of t, such that nc j = nc jt(t).

62

In this work, simulated annealing [68] was used to test the effectiveness of net-interconnect

costs in an optimizer. Starting with a valid component-CAB assignment configuration,

components are moved into eligible vacancies in other CABs or swapped with components

of same type to facilitate new configurations. Our objective function consists of a weighted

sum of total switch number (numsw), net-wire configuration costs (nc j) and number of

columns spanned by the net (numcol j):

cost = α ∗ numsw + β ∗
k∑
j

(nc j + numcol j) (3.2)

where k is the number of nets, α and β are constants. In this expression, nc j reflects the

sensitivity of net j to the three wire types while numcol j reflects the impact of additional

columns if type 3 wire is used (numcol j is 0 for vlwire and vgwire). It is also possible to

implement other optimization approaches that exploit the computed net-interconnect costs

as long as the device constraints can be adopted into the engine.

3.2.1 Test Suite Setup

Testing the quality of FPAA mapping results has been a difficult issue because of the lack of

a realistic circuit suite built using the available component set. Having a variety of circuit

classes, each with their own relevant metrics, prevents testing from being a straightforward

process. In this work, a test suite with focus on filters was proposed in an attempt to es-

tablish a uniform testing criteria. The availability of built-in capacitors and OTAs in FPAA

CABs make gmC filters very suitable candidates for this purpose. For this test suite, the

focus was only on the ac metrics relevant to important filter specifications. These metrics

and their definitions can be found in Table 3.3. Figure 3.14 depicts the physical meaning of

each of these metrics on the frequency response plot of a low-pass filter. The objective was

observing the impact of incorporating a performance metric into optimization cost function

for each circuit. Unlike digital circuits, it is not possible to automate the measurement of a

suite of analog circuits and the manual measurement process is prohibitive as the number

of circuits and experiments grow; therefore, only the simulation results were included in

63

this work relying on the correlation between measurement and simulation results presented

earlier in [74].

Table 3.3. Performance metrics of a low-pass filter and their definitions.
metric definition optimization objective
fc cut-off frequency [Hz] equalize to target
gpass pass-band gain [dB] equalize to target
rp pass-band ripple [dB] minimize
ror roll-off rate [dB per decade] maximize

Figure 3.14. Performance metrics of a low-pass filter.

A gmC filter can be systematically built by adjusting the transconductance (gm) of the

OTA using state-space equations of any desired filter specifications [75]. MATLAB was

used to generate state-space equations and SPICE netlists for 5 types of low-pass filters

including butterworth, chebyshev, inverse chebyshev, bessel and elliptic. Description and

average synthesis time (including simulations, place & route and optimization for the tested

metrics) of all circuits are given in Table 3.4.

3.2.2 Optimization Results

The test circuits described in Table 3.4 were placed and routed using RASPER with Win-

Spice3 [76] support running on a Pentium4 2.4 GHz machine with 1 GB RAM and Win-

dows XP operating system to collect performance metrics listed in Table 3.3 for different

64

Table 3.4. Test bench circuits.
filter name filter type order #cmp time(s)

b lp8 butterworth LP 8 16 7.7
bs lp7 bessel LP 7 16 7.4
c1 lp5 chebyshev LP 5 12 5.5
c2 lp5 inverse chebyshev LP 5 19 13.3
e lp7 elliptic LP 7 32 34.0

optimization goals. These goals include minimization of switch number (switch opt) or rp

(rp opt), equalizing gpass (gpass opt) or fc (fc opt) to the target performance metrics,

and maximizing ror (ror opt). For each optimization goal based on a performance metric,

that metric was inspected individually in the net sensitivity cost extraction. Performance

metrics of circuits for each of these optimization goals along with the initial placement

solution (pre opt) were obtained and presented in Figures 3.15, 3.16, 3.17, and 3.18. In

Figure 3.15 the relative errors of the resulting fc values from the target fc values were

demonstrated. All obtained fc values in Figure 3.15 are within 2.5 to 4.5 kHz range. Since

target gpass values are close to 0 dB, demonstrating the absolute errors rather than the

relative errors was preferred for gpass in Figure 3.16. Figures 3.17 and 3.18 present the

rp and ror values. Since optimization objective is maximization for ror, higher values

mean success. For all other metrics, lower results or lower errors with respect to the target

values are desired.

Using an analog circuit simulator in an optimization loop that requires multiple itera-

tions is prohibitively time consuming. In this work, the simulator was replaced with numer-

ical net sensitivity costs to complete the optimization task in a feasible time while pursuing

the performance goals set by the user. In a digital circuit reducing the critical path length,

which corresponds to minimizing the number of switches in our case would be a good

approach to reduce the circuit delay. When the results presented in Figures 3.15, 3.16,

3.17, and 3.18 are inspected, one can see that switch number minimization alone can ac-

tually degrade the circuit performance whereas using net sensitivity costs extracted from

65

cut-off frequency (fc) deviation from target value

0

20

40

60

80

100

120

290

310

b_ lp8 bs_ lp7 c1_ lp5 c2_ lp5 e_ lp7 ave

%
pre_op t
sw _op t
fc_op t

Figure 3.15. Cut-off frequency (fc) errors for different optimization goals (lower better, fc opt gives the
lowest average values). Missing bars equal 0.

pass-band gain (gpass) deviation from target value

0 .00

0 .20

0 .40

0 .60

0 .80

1 .00

b_ lp8 bs_ lp7 c1_ lp5 c2_ lp5 e_ lp7 ave

d
B

pre_op t
sw _op t
gpass_op t

Figure 3.16. Pass-band gain (gpass) errors for different optimization goals (lower better, gpass opt
gives the lowest average values). Missing bars equal 0.

66

ripple (rp)

0

2

4

6

8

10

12

14

b_ lp8 bs_ lp7 c1_ lp5 c2_ lp5 e_ lp7 ave

d
B

pre_op t
sw _op t
rp_op t

Figure 3.17. Pass-band ripple (rp) values for different optimization goals (lower better, rp opt gives the
lowest average values). Missing bars equal 0.

roll-off rate (ror)

0

50

100

150

200

250

300

350

b_ lp8 bs_ lp7 c1_ lp5 c2_ lp5 e_ lp7 ave

d
B

/d
e

c
a

d
e

pre_op t
sw _op t
ro r_op t

Figure 3.18. Roll-off rate (ror) values for different optimization goals (higher better, ror opt gives the
highest average values).

67

performance metrics results in better or similar performance compared to the initial circuit

or switch minimization alone. Figure 3.15 reveals a 50% reduction by using fc opt com-

pared to pre opt for fc error from the target fc value. Likewise, a 90% error reduction

was observed for gpass in Figure 3.16, a 91% decrease in rp value was observed in Figure

3.17, and a 9% increase in ror value was observed in Figure 3.18 when net sensitivity costs

based on these metrics were used. The only case where switch minimization seems to work

slightly better is c2 lp5 (inverse chebyshev filter), which is a robust circuit with acceptable

performance metrics for all optimization methods.

In these experiments, only one performance metric is used to form the cost function for

each optimization method. Optimizing multiple metrics simultaneously requires special

care, since some metrics will be conflicting with each other and it won’t be possible to

optimize all at the same time. For instance, it is very difficult to increase the roll-off rate

and decrease the ripple of a circuit at the same time. Also, since each metric have different

numerical value ranges, their relative weights should be assigned carefully.

3.3 Parasitic Extraction in GRASPER

Since the available wiretypes are not predefined but can be generically described in GRASPER,

the task of parasitic extraction becomes more challenging. Subcircuits for different wires

on the routing path are not readily available and have to be created as part of the task.

This process requires extra effort, but also helps capture the interconnect structure more

realistically.

GRASPER also uses subcircuit blocks that are inserted between the component pins in

a similar fashion to RASPER to simulate the effects of interconnect on circuit performance.

Two basic blocks are used for capturing the effect of wires and switches on the interconnect;

namely, switches and wire segments.

Switch blocks are two-port subcircuits intended to simulate the effects of the pro-

grammed switches only, off switches are represented by a capacitance for simplicity. SPICE

68

models for the on switches can be acquired from the technology files for the given architec-

ture. This allows customization of the model for desired level of accuracy as in the case of

RASPER. For a higher level of accuracy, an active device such as a transistor-based model

can be preferred. For a low level of complexity, the subcircuit can consist of an equivalent

impedance that approximates the voltage-current relationship of the switch when it is on.

(a) (b) (c)

Figure 3.19. Extraction of wire segments from wires and switch locations in GRASPER. (a) Switches
that connect wires divide each wire to different segments. (b) Subcircuits are generated for each wire
segment. (c) Each wire segment is essentially an RC chain.

Wire segments are also two-port subcircuits generated by inspecting the wire and switch

characteristics on a portion of wire that is bounded by the programmed switch locations. At

each programmed switch location, wires are divided into segments that can be connected to

other wire segments or switches at one or both ends, but not anywhere in between. Figure

3.19 illustrates the process of generating wire segments from the wires and locations of the

switches that divide them. Subcircuit descriptions for each wire segment are generated ex-

clusively using information from the architecture configuration file such as segment length,

total number of switches on the segment, wire resistivity, wire capacitance, and off switch

capacitances. GRASPER can recognize grids as the minimum distance allowed between

69

any two switches on a wire; and each wire segment is modeled as a linear chain of smallest

wire pieces between two such grids that is called as a wire grid. Each wire grid is modeled

as a resistive element between ports of the wire grid and two capacitive elements between

each port and ground. In this model, the total wire resistance and capacitance is distributed

to the smallest wire units, unlike the lumped impedance model that was previously used

in RASPER parasitic extraction. Distributed impedance models are more accurate and re-

liable than lumped impedance models, especially for higher frequencies of interest. After

the addition of the off switches to the grids they exist, a distributed RC ladder is gener-

ated for each wire segment as illustrated in Figure 3.20. Note that off switch capacitances

are added only at the grids that actually contains a switch as described in the architecture

configuration file.

Figure 3.20. Parasitic extraction in GRASPER. Rather than extracting a lumped capacitance and resis-
tance for the whole wire segment, resistances and capacitances of wire grids are added into the chain,
distributing the RC components to the whole wire segment.

After the extraction of all wire segments in the interconnect, these wire segments are

connected to each other directly or via subcircuit blocks of the programmed switches.

SPICE models for I/O pads from the technology file are also added into the interconnect

subcircuit where applicable. To reduce the number of subcircuit descriptions, all blocks

within the entire interconnect is flattened, so that only one subcircuit description per circuit

net is sufficient. The number of ports of this subcircuit is determined by the number of

component pins connected to the circuit net associated with the interconnect.

Inductances are not included in this implementation of GRASPER parasitic extraction.

They can be included in a future revision to account for the potential RF support of future

70

reconfigurable architectures.

3.3.1 Model Order Reduction Using the Time Constant Equilibration Reduction
Method

Since parasitic component extraction starts from the level of smallest units of wire, the

resulting interconnect subcircuit can contain an overwhelming number of parasitic compo-

nents. Although this may be necessary for simulation accuracy over a wide range of fre-

quencies of operation, it may be an overkill for the frequencies of interest as well. Model

order reduction techniques provide with effective ways to reduce circuit complexity while

preserving the model fidelity. Sheehan proposes a method for deciding the nets of a cir-

cuit that can be eliminated for a minimum time constant of interest in TICER [77]. In this

method, time constant for each net can be individually computed using the impedances of

components, which are referred to as branches, that connect this net to other nets. TICER

finds slow nets and quick nets for eliminating the nets below and above the frequencies of

interest respectively. A net is a quick net if its time constant is smaller than the minimum

time constant of interest. Similarly, a slow net has a time constant higher than the maxi-

mum time constant of interest. GRASPER eliminates only the quick nets, since slow net

elimination does not offer any reduction in the complexity of extracted interconnects for

reasonable values of maximum time constant. A net’s time constant is computed as

τ =

∑
ci∑
gi

(3.3)

where gi is the conductance and ci is the capacitance of each branch i connected to the net.

It should be noted that the term net used in this context refers to the intermediate signal

nodes within the interconnect network and should not be confused with the actual circuit

nets that these interconnect networks are generated for.

A quick net can be eliminated by removing all the branches connected to the quick

net and inserting new branches between every pair of other nets connected to the removed

branches. The impedance of the new branch inserted between two neighbor nets i, j of the

71

eliminated quick net can be approximated as

Ei j ≈
gig j∑

g
+ s

gic j + cig j∑
g

(3.4)

where
∑

g is the total conductance of all branches connected to the quick net, gi, j are the

branch i,j conductances, and ci, j are the branch i,j capacitances [77].

The quick net elimination method described above allows removal of components con-

nected to the quick net at the cost of new components created between every pair of neigh-

boring nets. If the quick net has two neighbors, only one components is added while two

are being removed, reducing the component count by one. When the quick net has three

neighbors, there is no reduction in the number of components. For quick nets with neigh-

bors more than three, quick net elimination increases the number of components; therefore,

is not useful for the objective of reducing the model order.

But even eliminating two or three-branch nets can be quite useful when used on the

regular RC chains that build the wire segments. As illustrated in Figure 3.21a, the resistor

is simply taken out of the network and the capacitor is connected to the next net when

a two-branch net is eliminated. Since wire segments are regular chains of resistors and

capacitors, another capacitor connected from the neighbor net to ground will be in parallel

with the first capacitor, and can be reduced to a single capacitor by finding their parallel

equivalent. Then, the next net also becomes a two-branch net and can be reduced in similar

fashion if it has a time constant below the minimum time constant. If two-branch nets can

not be reduced because of the increased capacitance on the net, net elimination can continue

with the three-branch nets as shown in Figure 3.21b supported by parallel reduction of

capacitors of the resulting ∆-networks.

Minimum time constant corresponds to the maximum angular frequency; i.e., 2π ∗

(maximum f requency). Having the option to decide the minimum time constant value gives

control of adjusting the parasitic circuit accuracy and complexity to the user.

72

Figure 3.21. Reducing the number of parasitic components in arrangements that are most commonly
encountered in interconnects extracted by GRASPER. Using the technique (a) on a net that has one
resistor and one capacitor as branches effectively removes the resistor, (b) whereas the number of
components of a Y-network of two resistors and one capacitor will be rearranged in a way that allows
parallel reduction of capacitors of the resulting ∆-network with the capacitors of potential neighbor
networks.

3.3.2 GRASPER Parasitic Extraction Results

One of the goals in developing GRASPER was to make it independent of a particular ar-

chitecture, so that different FPAA architectures exhibiting variations in their wire and CAB

topologies can be supported in the future without major updates to the tool. Therefore, 5000

architectures similar to RASP2.8 [65] were tested by varying the number of components

and wires, switch matrix densities, and wire segmentation levels. An 8th order butterworth

GmC filter was placed and routed on each of these architectures. Parasitic impedances

were also extracted to observe the impact of placement and routing. Among these 5000

architectures, 4747 (94.9%) were routed successfully and 4715 (94.3%) demonstrated low-

pass filtering functionality with a reasonable deviation from the target frequency response.

Simulation results for this experiment are presented in Table 3.5.

GRASPER placement and routing results were also tested on an actual circuit and

FPAA, using a RASP2.8 FPAA evaluation board powered by HP E3610A power supply,

73

Table 3.5. Performance metrics for an 8th order low-pass filter before and after routing on 5000 FPAA
architectures.

metric ideal mean std
cut-off frequency (fc) [Hz] 9976 10939 1363

pass-band gain (gpass) [dB] 0.585 0.878 0.165
pass-band ripple (rp) [dB] 0.362 3.743 1.683

and PCI-DAS 4020/12 scope card to program and measure the response of a 4th order but-

terworth low-pass filter that is specified using 8 OTAs and 4 capacitors in the circuit netlist.

Measurement and simulation results are depicted in Figure 3.22. In addition to the simu-

lation of the input netlist (pre-pnr), two different post-routing simulations (post-pnr sim1

& sim2) are plotted to demonstrate the effect of the simulation models chosen. In the first

case (post-pnr sim1) routing switches are approximated by a 10 kΩ resistor. In the sec-

ond case (post-pnr sim2), each routing switch is modeled using a floating-gate transistor;

resulting in more complex parasitic interconnects. However, the performance metrics sum-

marized in Table 3.6 suggests that this model can simulate the actual circuit performance

more accurately.

Table 3.6. Performance metrics obtained from measurements and different simulations of 4th order
low-pass filter.

metric pre-pnr post-pnr sim1 post-pnr sim2 measurement
fc [Hz] 13804 11641 8222 8500

gpass [dB] 0.097 0.102 0.059 2.5

3.4 TargetC Algorithm for Improved Performance of Routed Circuits

Parasitic capacitances contributed to the circuit by the routing interconnects are major ob-

stacles to meet most design specifications. The logical objective in routing would be mini-

mization of wire and switch capacitances to reduce the impact on the circuit performance.

But if looked into this problem in another way, routing capacitances can also be used

to one’s advantage, and can even turn a foe into an ally. Capacitors are often used as

74

Figure 3.22. Simulations of circuits that correspond to the input netlist (pre-pnr sim), parasitic ex-
tracted after routing for different routing switch models (post-pnr sim1 & sim2), and measurement
(data points and curve fit) for a 4th order butterworth low-pass filter. Measurements have about 2.5
dB gain, which has been removed here for comparison purposes.

elements of an analog circuit, and RASP architectures contain discrete capacitors in their

CABs to be used for this purpose. A capacitor connected to ground can be encountered

in many analog designs; RASP2.5 and RASP2.7 architectures even had CAB capacitors

connected to ground. Since interconnects also contribute capacitors connected to ground,

routing wires can in fact serve as capacitors connected between the routed nets and ground;

therefore they can be incorporated into the circuit and eliminate the need for discrete CAB

capacitor use. Since CAB capacitors take up a large area, reducing the need for drawn

capacitors may relax the active area requirements and the left space can be utilized with

other useful components. Most importantly, since the routing capacitances are taken into

account to match the target capacitance for each net, design objectives can be met more

successfully.

TargetC algorithm is developed for using the routing capacitances to match with the

target capacitance for each net. As mentioned in Section 2.2, all components including

the CAB capacitors are entered as instantiations of subcircuits in the input netlist. To use

75

the targetC algorithm, target capacitance values are added into the netlist as constraints for

nets that need to have a certain capacitance to ground. This constraint is added as a simple

capacitive element line into the netlist in the format:

Ci neti 0 capacitance value

so that it can be distinguished from the CAB capacitors that are added as instantiations of

the corresponding subcircuits. During the circuit graph setup, cells for only the capacitive

elements added as subcircuit instantiations of the CAB capacitors are created, and each

target capacitance value tarCi is added as a constraint to the corresponding net i. This style

of entering the target capacitances also allows simulation with the same input file.

TargetC algorithm is applied in the routing stage of GRASPER. When each net is

routed, capacitance contribution by the routing wires are added up. The total net capac-

itance netCi is the sum of all routing wire capacitances for net i and discrete CAB capaci-

tors, if any, connected to net i. Then a discrete capacitor of capacitance Cd is added to net i

if netCi is below a threshold capacitance value maxCi such that

maxCi = tarCi −
Cd

2
(3.5)

After the addition of the discrete capacitor, netCi is evaluated again. Discrete capacitors

are added to net i while netCi is less than maxCi.

Table 3.7. Comparison of cut-off frequencies (fc) of the circuits with ideal interconnects, parasitic effects
of routing, and parasitic effects of routing with targetC algorithm.

ideal routed targetC routed error targetC error
blp8 9976 6745 10209 32.39 % 2.34 %
c1lp7 7924 5610 7568 29.20 % 4.49 %
c2lp5 8298 5741 8491 30.81 % 2.33 %
elp4 9527 6295 11194 33.92 % 17.50 %

Four low-pass gmC filters have been routed and simulated using this algorithm. The

results are reported in Table 3.7. From these results, one can see the effectiveness of the

targetC algorithm in bringing the cut-off frequency closer to the target value.

76

CHAPTER 4

FPAA ARCHITECTURE EXPLORATION

Availability of CAD tools can accelerate the design process by orders of magnitude.

As users are able to reach the limits of using the existing reconfigurable hardware, IC

designers feel the pressure of improving and expanding their designs. Developing new

reconfigurable array architectures, like developing any other hardware system, requires

making many strategic decisions. Under the conditions defined by scarcity of the resources,

the architectural choices made in the system design process directly influence the usability

and performance of the product; therefore, should be approached carefully.

4.1 Previous Studies on FPGA Architecture Exploration

(a) (b) (c)

Figure 4.1. Some interconnect topologies that can be used for configuring the connections: (a) fat tree
(hierarchical), (b) bus, (c) mesh (nearest neighbor).

The necessity for making high level design decisions wisely leads to another interesting

area of research; namely, design space exploration. Many studies have been done in the

past to explore FPGA [78, 79, 80, 81, 82, 83, 84, 85, 86] and microprocessor [87, 88, 89]

architectures. To decide the appropriate design (input) and solution (output) spaces for

FPAA architectures, looking into how previous FPGA architecture exploration research

has been done can be useful. Architecture decision categories for design space exploration

77

in FPGA can be mainly summarized as the following:

• Interconnect topologies: Figure 4.1 illustrates some of the topologies that can be used

for interconnect organization that can be counted as fat tree (hierarchical), bus, and

mesh (nearest neighbor) connections [88].

• Segmentation levels: Routing wires connecting the computational logic blocks (CLB)

may span different number of blocks.

• Switch types: Switch fabric can be constructed using various switch technologies

such as pass-gates or tri-state switches.

• Functional units: The way logic is implemented, among the choices of look-up tables

(LUT), programmable logic gates, multiplexers, and And-Or gates, can influence the

quality of outcome.

• Memory and register resources.

The following metrics are the most commonly measured responses for the explored FPGA

architectures:

• Total power consumption

• Total area

• Utilization (for both active and routing area)

• Performance (delay, maximum frequency, etc.)

4.2 FPAA Architecture Exploration

Some of these categories can find applicability into FPAA architecture exploration as well.

Results of varying interconnect topologies, segmentation levels, and functional units alto-

gether can reveal possible interaction between these input factors. Switch types are not

78

likely to interact with the other factors, since they dont affect the placement and routing

results for a given technology mapped circuit, but only influence the circuit performance

through their parasitic contribution; therefore, exploring their impact on the architectures in

a separate study will be more appropriate. Memory and register resources are inapplicable

to FPAAs.

The interconnect topology of RASP2.8 can be considered as a hybrid of bus and mesh

interconnects. To limit the problem size, only similar interconnect topologies are investi-

gated in this work. In this topology, CABs are organized as a regular rectangular array,

and there are horizontal global (hg) and vertical global (vg) wires that span all the columns

or rows of CABs. In addition, there are vertical wires with smaller span covering only a

portion of all CAB rows, starting from vertical wires of span 1 (vertical local wires). These

wires are supported by the horizontal nearest neighbor (hn) wires, which are in fact verti-

cal wires that establish connection between two CABs that are neighbors in the horizontal

orientation. The wire types to observe the effects of different levels of segmentation are

illustrated in Figure 4.2.

In FPAA, while increasing the availability of routing resources can improve the effi-

ciency of routing, it can also result in the increase of parasitic effects on the circuit. A

previous study for the FPGAs shows that increasing the number of routing resources may

not really be necessary for improving the routability of the target circuits [90]. Since the

effects of routing parasitics can be very critical to the performance of the circuits that will

be implemented on the FPAA, it is worth investigating the tradeoffs between the ease (i.e.

number of wires and switches) and the quality (i.e. circuit performance) of routing. Adding

the number of each wire type to be explored and the switch matrix density into the input

space takes these factors into account. Switch matrix density is the ratio of the number of

physical switches available to the total number of possible switch locations on the switch

matrix. Having a full switch matrix increases the routability at the cost of adding extra

capacitance on the wires they are connected to. Finally, the number and distribution of the

79

switch density component distribution

ve
rti

ca
l w

ire
 c

ou
nt

 a
nd

 s
eg

m
en

ta
tio

n hn

hg

switch density component distribution

ve
rti

ca
l w

ire
 c

ou
nt

 a
nd

 s
eg

m
en

ta
tio

n hn

hg

Figure 4.2. Variation of wires with respect to their orientations and span (segmentation).

functional units have a direct influence on the success of routing. The more required units

each CAB has, the more likely it is to find local routing solutions, but at the same time

device utilization and wire parasitics will be affected by the increased CAB size and CAB

pin number.

The power of GRASPERs features can be appreciated better in the study of architec-

ture exploration. Since no fixed architecture is hardcoded into GRASPER so that it can

be configured to support many architectures, it provides the ability to collect placement

and routing statistics for many FPAA topologies within the design space to be explored.

GRASPER also has a parasitic extractor, which can be used to simulate the effects of rout-

ing parasitics on the circuit performance by means of an external simulator such as SPICE.

Considering the number of possible architectures to test, fabrication and measurement is

not a feasible option. Accuracy of the simulation models is useful; however, since the

objective is capturing the trends of the design parameter variation effects, fidelity of the

simulation is more important and necessary.

80

GRASPER provides a powerful tool for evaluating different architectures efficiently.

But, how can it be used effectively to explore a design space and find the optimal architec-

ture among many design points? It is also worth noting that each circuit class may dictate

different demands resulting in a different optimal architecture; therefore, the target circuit

factor has to be considered as well. When the combinations of all possible values of dif-

ferent input parameters in a design are considered, the number of design points to test can

be overwhelming. This work uses the design of experiments approach that is reviewed in

Section 4.3 for systematically exploring the design space to find an optimum architecture

for each class of circuits. The results of the case studies in this work are expected to give

useful feedback to the hardware designers. But more importantly, the methodology devel-

oped here can also be considered as an indispensable part of the reconfigurable architecture

design process.

4.3 Design of Experiments

Design of experiments (DOE) is a systematic approach to efficiently characterize and op-

timize a process by collecting and analyzing data from experiments that may or may not

be controlled by the experimenter [91, 92]. In the case where experimenter has no control

over the process, the outcome of each experiment is conventionally called an observation.

The factors that affect the outcomes of the experiment are referred to as input factors, and

the particular results the experimenter is seeking in the outcomes are called as responses.

Varying only one input factor at a time gives the experimenter confidence when determin-

ing the effects of each input factor separately at the cost of increased amount of resources

and time used. This method rapidly becomes infeasible as the number of factors and the

levels they can take increase. Statistically designed experiments, on the other hand, help

determine the impact of multiple input factors simultaneously with less effort.

DOE is an effective approach that has been used widely in the fields of agriculture,

mining, environmental sciences, biomedicine, and manufacturing to analyze statistical data

81

for drawing conclusions or to design experiments efficiently. DOE methodology consists

of the stages below:

• Screening of input factors to verify they actually have an effect on the responses.

• Planning and conducting the experiment.

• Fitting models to the experimental data.

• Optimization or conclusion based on the obtained models.

There are several approaches to designing an experiment. These approaches can be

classified into the following three groups:

• Classical designs

• Optimal designs

• Space-filling designs

Among the classical designs, one can find full factorial, fractional factorial, central

composite, and robust designs as the most commonly used design types. All possible input

factor level combinations are included in a full factorial design, which results in
∏

i ki

design points where ki is the number of levels for input factor i. For the common case

where each factor is divided into two levels, number of design points is 2n. This design can

support high level interactions between the input factors; however, the number of points

grow so fast for increasing number of levels and factors that it is not practical for most

cases. A 2k−p fractional factorial design helps reduce the number of points in such a case

by selecting a 1
2p fraction of the corresponding full factorial design. Fractioning the design

results in confounding the interaction effects between some of the input factors; i.e., these

effects can not be separated from each other. Central composite designs are obtained by

adding two axial points for each input factor and a central point (2k+1 points total) to

82

an existing full or fractional factorial design. An illustration of these three designs for 3

factors with 2 levels is presented in Figure 4.3. Classical designs are well researched and

very effective for relatively simple regions; however, they are not very suitable for covering

a wide range of inputs.

(c)(b)(a)

Figure 4.3. Classical experimental designs for 3 factors with 2 levels: a) full factorial design, b) frac-
tional factorial design, c) central composite design.

Optimal designs are most useful when the system is relatively well-known, and there is

some confidence on the most suitable model for this system. Using this style is also suitable

when there are known constraints on the points of a classical design, such as certain corners

of a factorial design being infeasible. Essentially, the experimenter already has an idea

about what model to use, and trying to optimize the design by picking points at the right

places that will minimize the error for that particular model.

Using space-filling designs is preferable when there is not much information about the

system and the appropriate model. In space-filling designs, the overall design space is

regularly or randomly sampled for a fixed number of design points of the experimenters

choice. Increasing the number of levels for input factors multiply the design points in a

classical design, whereas in the case of space-filling number of design points do not have to

increase as much. This property makes space-filling designs a better choice for maximum

coverage of wider input ranges, and allows capturing global models of the system. There

83

are variants of space-filling designs with respect to the sampling method used. In random

sampling, each input is randomly selected from the range of values for that input factor.

This randomness does not guarantee equal representation of different portions of the sample

space; therefore, in a second approach called stratified sampling the entire range is spread

evenly into n strata, and points are randomly selected equally from each stratum. Finally,

a third approach called Latin Hypercube Sampling (LHS), divides the sample space for

each input factor into N strata of equal marginal probability 1
N where N is the number

of samples, and takes samples only once from each stratum. LHS is essentially a high

dimensional generalization of Latin square sampling, and results in better representation

of the real variability [93, 94]. In this work, space-filling design with LHS was used for

designing the experiments and collect data for FPAA architecture exploration. Figure 4.4

depicts a 3-dimensional view of an experimental design using LHS.

Figure 4.4. A 3-dimensional view of an experimental design using latin hypercube sampling (LHS).

84

4.4 Fitting Polynomial Regression Models to Experimental Data

The next step after collecting the experimental data is finding suitable models to approx-

imate each response for different values of input factors. The main purpose in modeling

is being able to predict the responses for any point within the entire design region without

having to execute the experiment for all those points. A simple approach to obtain such a

model is fitting a multi-variable polynomial that accepts input factors of the design as its

variables using regression techniques. Figure 4.5 visualizes the response surface formed

when such a polynomial regression model is fit to the design data.

Figure 4.5. The response surface in a polynomial regression model.

A polynomial regression model is a Taylor series expansion with a finite number of

polynomial coefficients. These coefficients may consist of a constant term, different order

terms for each factor, and interaction terms. The lower polynomial orders of one, two,

and three are commonly referred to as linear, quadratic, and cubic respectively. Linear

85

terms in the polynomial reflect the main effects of each input factor, while nonlinear terms

can be visualized as curvatures in the response surface. If there are dependencies between

two or more input factors, these dependencies are represented in the interaction terms of the

polynomials. The order of a polynomial regression model in each variable is determined by

the number of distinct points for the corresponding input factor among the design points.

Therefore, if number of levels is ki for input factor i, the maximum polynomial order in

variable i can be ki − 1. Equation 4.1 gives an example to a quadratic (second order)

polynomial regression model with interaction order 2:

y = β0 + β1x1 + β2x2
1 + β3x2 + β4x2

2 + β5x1x2 + ε (4.1)

In the polynomial model given above, xi are called the predictor or input variables, β are

estimates (of the polynomial coefficients), and y is the response that is being modeled.

When an input vector ~X is evaluated using this model, the result is called the regression

predictor of y, and conventionally shown as ŷ:

ŷ = β̂0 + β̂1x1 + β̂2x2
1 + β̂3x2 + β̂4x2

2 + β̂5x1x2 (4.2)

where β̂ are estimated through ordinary least squares. The error ε between the actual re-

sponse value y and the predicted response ŷ is called the residual.

To determine the coefficients in a polynomial regression model, least squares estimates

method is used. Least squares estimates method is based on minimizing the sum of squares

of the residuals, which is also called as sum squared errors (SSE), for the set of training

data used in fitting a model. Inputs in the data set may be mapped to [-1, 1] range to prevent

any factor dominating over the other factors due to different ranges of numerical values. A

successful model fit is one that has a small SSE and a normal distribution of residuals with

mean 0. Unfortunately, since the value of SSE depends on the range of response values,

there is no fixed threshold to decide what SSE values reveal a successful fit. To appreciate

a small SSE value, it is best to evaluate it with the total sum of squares as well. Total sum

86

of squares (SST) is directly obtained from the response values in data set as:

S S T =
n∑
i

(yi − y)2 (4.3)

where yi is the observations of response and y is the mean response value. Then, another

metric called as the coefficient of determination, also referred to as R2, can be calculated

as:

R2 = 1 −
S S E
S S T

(4.4)

taking values between 0 and 1. When R2 approaches 0, the residuals obtained using the

regression model do not display any better performance than using the sample mean as

estimated response for all inputs. An R2 value close to 1 is a good sign of a successful

model fit.

Without sufficient knowledge of the system, one can find the right polynomial model

orders by trial and error. When more terms are included into the regression model with

increasing factor orders, R2 is expected to approach 1 while SSE is reduced. This may

be deceiving in some cases, since the model begins to chase the variation in data rather

than the trend, resulting in overfitting the data. In this case, the residuals for observations

included in the sample data will be smaller, while the prediction ability for the points not

included will be lost. To prevent the undesired effects of increasing the model complexity,

predicted sum square residuals (PRESS) is used. PRESS is calculated by first removing

one point from the observations and fitting the model for the remaining data; then repeating

this process for each observation while adding the squares of prediction residuals for the

omitted observations. PRESS values can never be less than SSE; however, having PRESS

values close to SSE is a good sign that the model is not very sensitive to the sample data,

and preserves its prediction ability for the points not tested in the experimental design.

Similar to the SSE, a predicted coefficient of determination, also called as R2
pred, can also

be derived from PRESS as:

R2
pred = 1 −

PRES S
S S T

(4.5)

87

Like R2, R2
pred also has the maximum value of 1, which tells the model fit is very suc-

cessful and is likely to predict the responses for points not included in the sample data well.

On the other hand, R2
pred can also take negative values when the model prediction results in

residuals worse than assuming the response equal to the sample mean for all inputs.

4.5 Systematic Exploration of the Floating-gate-based FPAA

In this work, FPAA architecture exploration was narrowed to bus-style topologies which

are similar to the RASP2.8 architecture. Like RASP2.8, the searched architectures are also

8 rows by 4 columns of CABs, connected to each other by vertical and horizontal wires of

different spans. In addition, the effects of different switch densities where only a certain

proportion of all vertical and horizontal wire intersections are connected via switches, and

the number of components included in each CAB were considered. The number of input

factors (knobs) was limited to 9 as follows:

1. Switch density (sw): from 0.5 (half connected) to 1.0 (fully connected) with 0.125

increment (5 levels).

2. hgwires (hg): from 2 to 8 (7 levels).

3. v8wires (v8): from 0 to 12 (13 levels).

4. v4wires (v4): from 0 to 12 (13 levels).

5. v2wires (v2): from 0 to 12 (13 levels).

6. v1wires (v1): from 2 to 12 (11 levels).

7. hnwires (hn): from 0 to 4 (5 levels).

8. output transconductance amplifiers(OTA), from 1 to 5 (5 levels).

9. capacitors (cap), from 1 to 5 (5 levels).

88

These input factors were quickly screened, and their effects on the responses given

below were verified. This test consisted of keeping all factors constant at a design point,

and varying only one factor to see if the response changes. Since FPAA is a reconfigurable

architecture with prefabricated units, all of these inputs must be discrete. Input factor

1 has 0.125 increments; all other input factors take integer values. The 9-dimensional

space defined by these input factors with their associated levels contains about 106 million

possible points in the design region.

Architecture exploration requires testing the performance of many architectures for a

set of circuits. Manufacturing all these architectures is not feasible; therefore, simulations

using the parasitic extraction capabilities of GRASPER mentioned in Chapter 3 were in-

evitable. Even with the simulations, it is necessary to rapidly collect the metrics of interest

for a large number of architecture-circuit pairings, strongly necessitating automation. For

these reasons, the circuits tested were limited to gmC filters, for which computer software

to extract performance metrics such as cut-off frequency (fc), pass-band gain (av), and rip-

ple (rp) was developed. Since gmC filter design requires only OTAs and capacitors, the

focus in this study was only on these CAB components. Within the range of architec-

tures specified above, an optimal FPAA for 4 different gmC low-pass filters were searched.

These filters are:

1. blp8: 8th order butterworth with 8 capacitors and 17 OTAs.

2. c1lp7: 7th order chebyshev with 7 capacitors and 17 OTAs.

3. c2lp5: 5th order inverse chebyshev with 5 capacitors and 19 OTAs.

4. elp4: 4th order elliptic with 4 capacitors and 17 OTAs.

SPICE netlists for these 4 gmC filters are provided in Appendix C. For each of these

circuits, seven different responses with continuous values were modeled. These responses

are:

89

1. Routability: A value that indicates the ratio of successfully routed nets. If routing

was completed successfully, routability is 1; otherwise it is a real number between 0

and 1. A feasible architecture is required to achieve a routability value of 1 for all

circuits.

2. Cut-off frequency (fc): The frequency at which the gain falls 3 dB below the pass-

band gain.

3. Pass-band gain (av): The ratio of output signal to input signal (in dB) at the pass-band

region of the filter.

4. Ripple (rp): The difference between the maximum gain over the whole frequency

spectrum and the pass-band gain (in dB).

5. Switch utilization (swutil): Percentage of the switches used for routing to the total

number of switches.

6. Wire utilization (wireutil): Percentage of the wires used for routing to the total num-

ber of wires.

7. Component utilization (cmputil): Percentage of the components used for placement

to the total number of components.

Responses 1, 5, 6, and 7 are collected using the placement and routing tool (GRASPER).

Responses 2, 3, and 4 are collected by simulating the parasitic extracted SPICE netlist of

a successfully routed circuit. The aim is to fit polynomial regression models for each of

these responses and use these models together to find the optimal architecture. For this

purpose, experiments were designed for the 9 input factors given above. To design the ex-

periments, stratified Latin hypercube with symmetrical points was used. Two experiments

were designed to sample different number of design points. The first experiment contains

2000 points and is used for modeling. The second experiment contains 200 points and is

90

used for validation of the model. Architectures for these design points are generated using

automated scripts, and GRASPER is used to place and route each circuit on these archi-

tectures, while SPICE is used to collect the performance metrics. The statistics summary

for the 2000 data points may be found in Tables 4.1, 4.2, 4.3, and 4.4 to give an idea about

the different numerical ranges for each response. In these tables, min and max refer to the

minimum and the maximum values in the data set, median refers to the value of data point

that is larger than half of the points in the data set, quartile1 (quartile3) is the first

(third) quartile value, mean is the arithmetic mean, and stdev is the standard deviation of

data. In the statistics terminology, first (third) quartile is the value of the point that is larger

than 25% (75%) of all values in the data set.

Table 4.1. Summary statistics of 2000 data points for the circuit blp8.
routability fc av rp swutil wireutil cmputil

min 0.275 4886 -0.359 0.047 0.185 6.180 4.427
quartile1 1.000 9310 0.829 1.378 0.443 8.949 5.903
median 1.000 9976 0.892 3.171 0.614 10.384 6.641

quartile2 1.000 10939 0.953 4.546 0.861 12.676 8.854
max 1.000 14420 1.862 9.451 3.987 24.541 13.281
mean 0.989 10081 0.888 3.086 0.701 11.041 7.147
stdev 0.070 1230 0.241 1.951 0.367 2.843 2.110

Table 4.2. Summary statistics of 2000 data points for the circuit c1lp7.
routability fc av rp swutil wireutil cmputil

min 0.306 4456 -4.089 0.452 0.187 6.271 4.427
quartile1 1.000 7396 5.698 14.824 0.445 8.980 5.460
median 1.000 7924 5.791 17.360 0.616 10.323 6.641

quartile2 1.000 8689 5.908 19.833 0.850 12.380 8.854
max 1.000 11721 11.996 24.119 2.760 23.132 13.281
mean 0.990 7962 5.838 16.511 0.698 10.912 7.145
stdev 0.068 937 1.966 4.602 0.351 2.630 2.110

91

Table 4.3. Summary statistics of 2000 data points for the circuit c2lp5.
routability fc av rp swutil wireutil cmputil

min 0.263 3459 -15.316 0.000 0.175 5.980 4.948
quartile1 1.000 8298 0.655 0.201 0.443 8.870 5.938
median 1.000 8891 4.439 0.923 0.625 10.345 7.422

quartile2 1.000 9749 6.648 2.557 0.872 12.327 9.896
max 1.000 32283 13.932 13.438 2.914 24.902 14.844
mean 0.992 9128 3.983 1.737 0.708 10.867 7.972
stdev 0.059 1344 3.998 2.048 0.366 2.736 2.352

Table 4.4. Summary statistics of 2000 data points for the circuit elp4.
routability fc av rp swutil wireutil cmputil

min 0.444 6591 -18.351 0.000 0.152 5.240 4.427
quartile1 1.000 9749 0.136 0.855 0.386 7.716 5.313
median 1.000 10690 3.254 3.011 0.544 9.005 6.641

quartile2 1.000 11721 4.719 5.124 0.764 11.038 8.854
max 1.000 15451 15.632 15.385 2.528 21.352 13.281
mean 0.996 10669 2.885 3.218 0.622 9.552 7.128
stdev 0.042 1416 3.746 2.419 0.330 2.500 2.098

4.5.1 Selecting optimum orders for multi-variable polynomial models

Various statistical tools are available to aid fitting polynomial regression models for dif-

ferent responses. In this work, model-based calibration (MBC) toolbox of MATLAB was

used. This tool requires the experimental data set for the desired response, and a simple

description of the polynomial model for which the coefficients will be determined. The

polynomial model description includes the maximum polynomial order for each input fac-

tor, and the interaction level between different input factors. To achieve more successful

models, the objective should be finding the polynomial orders that will result in the highest

R2
pred, or the lowest PRESS values possible for the given data. Using the polynomial model

fitting functions of MBC toolbox, an algorithm that finds the optimum polynomial models

for each response was implemented. The algorithm works as follows: First a sorted search

list is determined for the variables by fitting linear polynomials of only one variable at a

time, and sorting in ascending order of the PRESS values associated with each variable’s

92

Optimum Order Polyfit
1: input: number of poly variables;
2: for (each poly variable)
3: set order of variable to 1, other variable orders to 0;
4: compute PRESS for polyfit;
5: store PRESS value for variable;
6: sort variables in ascending order of their PRESS values;
7: set minError = minimum PRESS value;
8: set all poly variable orders to 0;
9: set max order for each variable = number of input levels - 1;
10:repeat
11: set minErrorIni = minError;
12: for (each sorted variable)
13: while (variable order less than max order and minError is reduced)
14: increment variable order;
15: compute PRESS for polyfit;
16: if (PRESS less than minError)
17: set minError = PRESS;
18: set bestpoly = poly variable orders;
19: else
20: decrement variable order;
21:until (minErrorIni is equal to minError)
22:return bestpoly;

Figure 4.6. Pseudo code for Optimum Order PolyFit.

model. Then, polynomial order of variables from the sorted search list is incremented one

by one until PRESS cannot be reduced further for that variable. The same is done for every

variable until maximum order for all variables is found in this pass. This process is repeated

starting from the first variable in the sorted search list until PRESS cannot be reduced any-

more by increasing the polynomial order of any variable. A pseudocode for this algorithm,

which is called as Optimum Order Polyfit is presented in Figure 4.6.

As an improvement to the algorithm, one can update the sorted search list after every

pass considering the rate of PRESS reduction for each variable in that pass. In addition,

a user-defined minimum error reduction value can be introduced to enforce a minimum

93

improvement in PRESS to accept the increase in the polynomial orders. The latter modi-

fication has the advantage of giving the user a control over the complexity of the resulting

polynomial models, as well as the time it takes for the algorithm to complete. Using the

Optimum Order Polyfit algorithm, and the data collected for four circuits placed and routed

on 2000 different architectures, the models summarized in Tables 4.5, 4.6, 4.7, and 4.8 were

obtained. In these tables, number of variables included in the model (variables), order

and number of estimates (coefficients) of the polynomial model, root mean square

(RMSE) and predicted root mean square (PRESS RMSE) of the regression model, RMSE ob-

tained by testing with validation data (valid RMSE), R2, and R2
pred are provided for each

of the 7 responses of 4 circuits. PRESS RMSE mentioned above is obtained by dividing the

earlier described PRESS statistic into the number of data points, and taking the square root

of that value, in a similar fashion to the relationship between RMSE and SSE.

Table 4.5. Optimum Order Polyfit results for the circuit blp8 using 2000 design points and 200 valida-
tion points.

routability fc av rp wireutil swutil cmputil
variables 7 9 9 8 9 9 4

order 5 4 5 4 4 4 4
coefficients 58 131 131 75 179 175 17

RMSE 0.050 642 0.193 1.511 0.041 0.364 0.055
PRESS RMSE 0.052 665 0.200 1.539 0.045 0.386 0.055
valid RMSE 0.039 675 0.188 1.563 0.044 0.400 0.056

R{2} 0.500 0.746 0.403 0.423 0.989 0.985 0.999
R{2} {pred} 0.457 0.708 0.311 0.377 0.985 0.982 0.999

When the results in Tables 4.5, 4.6, 4.7, and 4.8 are inspected carefully, one can see

very successful, moderately successful, and poor fits depending on the response type and

the circuits. Any model related to the utilization responses (swuitl, wireutil, cmputil) is

highly predictable as hinted by the R2
pred values hitting very close to 1. The models for fc

are fairly decent, especially for the circuits blp8 and c1lp7. The predictive power of the

routability models are expected to be less as R2
pred values of 0.5 or less suggest. However,

with validation RMSE values ranging from 0.04 to 0.08, these models may still be used by

94

Table 4.6. Optimum Order Polyfit results for the circuit c1lp7 using 2000 design points and 200 valida-
tion points.

routability fc av rp wireutil swutil cmputil
variables 7 8 4 8 9 9 5

order 6 4 4 6 4 4 4
coefficients 55 83 18 87 176 176 19

RMSE 0.055 534 1.859 3.083 0.034 0.318 0.055
PRESS RMSE 0.057 545 1.868 3.161 0.036 0.338 0.055
valid RMSE 0.081 558 1.598 3.137 0.040 0.351 0.056

R{2} 0.357 0.689 0.114 0.571 0.992 0.987 0.999
R{2} {pred} 0.293 0.661 0.097 0.528 0.989 0.983 0.999

Table 4.7. Optimum Order Polyfit results for the circuit c2lp5 using 2000 design points and 200 valida-
tion points.

routability fc av rp wireutil swutil cmputil
variables 7 8 8 7 9 9 4

order 5 4 4 4 4 4 4
coefficients 83 46 47 40 175 175 14

RMSE 0.046 1109 3.595 1.764 0.039 0.365 0.061
PRESS RMSE 0.048 1121 3.637 1.779 0.041 0.384 0.062
valid RMSE 0.065 1030 3.675 1.818 0.037 0.381 0.061

R{2} 0.427 0.334 0.210 0.273 0.990 0.984 0.999
R{2} {pred} 0.343 0.304 0.172 0.245 0.987 0.980 0.999

Table 4.8. Optimum Order Polyfit results for the circuit elp4 using 2000 design points and 200 valida-
tion points.

routability fc av rp wireutil swutil cmputil
variables 7 8 7 7 9 9 4

order 4 3 5 4 5 4 4
coefficients 73 44 41 39 177 175 14

RMSE 0.036 1182 3.559 2.082 0.035 0.311 0.055
PRESS RMSE 0.038 1193 3.595 2.101 0.038 0.329 0.055
valid RMSE 0.029 1172 3.732 2.147 0.039 0.354 0.055

R{2} 0.279 0.318 0.116 0.274 0.990 0.986 0.999
R{2} {pred} 0.185 0.290 0.078 0.245 0.987 0.983 0.999

95

allowing a small tolerance of ≈ 0.05; since the highest routability values for the unroutable

circuits are observed to be 0.85 for blp8, 0.60 for c1lp7, 0.76 for c2lp5, and 0.79 for elp4.

The polynomial model fits for av and rp are not very successful, and it may not be a good

idea to strongly depend on their accuracies in the optimization phase. Fortunately, the

main requirement in filter design is to keep av and rp within acceptable margins rather than

precisely setting values for them.

4.5.2 Optimization Using Polynomial Regression Models

After fitting the polynomial regression models, a vector with its elements as the input fac-

tors that define the optimum architecture can be found using the optimization toolbox of

MATLAB. There are, however, two challenges in doing so: The first challenge is the re-

quirement to optimize multiple, and possibly competing responses simultaneously. Having

to do this multi-objective optimization for more than one circuit only adds to the challenge.

The second challenge is that the optimization may result in a vector with real numbers as its

elements because of the limitations of MATLAB in enforcing discrete constraints; hence,

cannot be implemented as a real FPAA architecture.

As a solution to the first problem, there is a method for combining several responses,

and optimizing the overall result quality while maintaining minimum satisfaction levels for

each response: the desirability function [95, 96]. A desirability function is a mapping of the

response to the range [0, 1], where 1 is the most desirable value and 0 is unacceptable. This

mapping also helps with normalizing the responses that may have very different ranges of

values. Each response can be transformed to [0, 1] range in a different way to reflect the

characteristic of that response. For instance, one may want to achieve a target value for

fc whereas the highest value possible is desired for any of the utilization responses. In

this case, desirability function for fc can be defined such that it reaches 1 when fc value

approaches the target fc, and goes down to 0 as fc goes farther away from fc in both di-

rections. A maximum deviation from fc, say ±10% of the target value, can be set so that

the corresponding desirability is 0 for fc values outside this range. Hence, the desirability

96

function for fc looks like a triangle with the apex at the target fc. For utilization, the de-

sirability function may start as 0 at the minimum acceptable utilization value, and reach to

1 when the utilization is 100% (or any satisfactory value that going higher than this value

does not matter anymore). In this case, desirability function will look like a ramp. It is also

possible to shape the ramp by taking the powers of desirability. If the power is greater than

1, desirability function takes a concave shape, whereas a power in the range (0, 1) gives a

convex shape to the desirability. If any value within a certain range is equally acceptable for

a response, the desirability function can be set to look like a rectangle that rises to 1 at the

lower bound of the range, and falls back to 0 at the higher bound. Figure 4.7 illustrates dif-

ferent desirability functions for the objective of maximization, minimizing deviation from

a target value, and minimization. The effect of taking the powers of different regions is also

demonstrated in Figure 4.7d.

targetmax min

W > 1
W < 1

(a) (b) (d)(c)

Figure 4.7. Desirability functions for different optimization goals: a) maximize, b) minimize deviation
from a target value, c)minimize, d) minimize deviation from target, but with weights other than 1 on
each side.

The major advantage of using desirability functions rather than the usual cost function

based on the weighted sums of different costs is the ease of combining multiple objectives.

When weighted sums are used, assigning weights to each response is not a straightforward

process. The different numerical value ranges and importance of responses can be reflected

to the weights to some degree; however, enforcing satisfactory results for all objectives may

not always be possible. The unacceptable low values for a response may be compensated by

the unacceptable high values of another when added up, erroneously giving an acceptable

cost value. On the other hand, combining the desirability functions of different responses

97

is simply taking their geometric mean:

D = (
n∏
i

di)
1
n (4.6)

Moreover, if each response i has a different level of importance, they can be assigned

weights wi as desirability powers:

D = (
n∏
i

dwi
i)

1∑n
i wi (4.7)

When the geometric mean of desirability functions are taken, any response that has

an unacceptable value (i.e. desirability = 0) will make the overall desirability value 0;

therefore, all responses must be satisfied simultaneously while finding the best combination

of responses leading to the highest desirability.

By inspection of the various possible outcomes of the desirability transform depicted in

Figure 4.7, it can be deduced that the desirability function for a response is not continuously

derivable, leaving the traditional gradient-based optimizers unusable to solve this problem.

Thus, the optimizers that can be used are limited to the derivative-free search algorithms.

Pattern search (PS) [97, 98] and simulated annealing (SA) [68] algorithms fall into this

category of optimizers and both are available in MATLAB; therefore, the polynomial mod-

els generated by the MBC toolbox, and the desirability functions that combine and reduce

them into a single cost function can easily be linked to PS or SA optimizers to find the input

vectors that result in the highest desirability values possible. Pattern search algorithm starts

with an initial solution point, an initial pattern determined by the used search method, and a

scalar parameter that controls the step length to iteratively find lower cost points, and move

toward them until convergence, which is decided by the step length that is updated at each

iteration. Simulated annealing also starts from an initial point, which is subject to random

perturbation to find lower cost points nearby. In the initial steps of simulated annealing

when the simulation temperature is assumed to be high, the moves that result in higher

points may also be accepted with a probability that falls with decreasing temperature, pre-

venting the optimizer from getting stuck at local minima. Both optimizers must iterate

98

though valid points at all times. It is also possible to have a combined optimization by

using the result of one optimizer as the starting point of the other optimizer. In this study,

the initial point was determined by taking the median value for each input factor; and it

was observed that SA followed by PS resulted in the design points with highest desirability

values compared to each optimizer alone, or PS followed by SA.

Another challenge is the necessity of defining the optimum architecture using discrete

points; therefore, the optimization results must be constrained to having discrete values. If

the optimizer does not support this constraint, one option may be first relaxing this con-

straint to find a solution, then rounding the continuous values in the solution vector to the

nearest discrete values on either side of the value. For a vector with n dimensions, the num-

ber of vectors that can be found by rounding to both sides for each dimension can be as high

as 2n when no element of the vector takes a discrete value. Although this method may be-

come infeasible as the number of input factors increase, since there are only 9 input factors

in this study, evaluating the resulting 512 architectures in MATLAB was not prohibitively

expensive. For the studies that require higher dimensionality, a sampling among these

points can be considered. For instance, if the rounding error difference between rounding

the continuous values to the nearest discrete values is larger than a threshold, rounding off

to only one side may be chosen to reduce the number of possible combinations.

4.5.3 Results and Conclusions

To summarize, the objective function for the optimizer was derived by combining the de-

sirability functions obtained from the polynomial regression models. The desirability func-

tions were designed such that routability is maximized ensuring its value does not fall

below 0.95 (rising ramp between 0.95 and 1), all utilization responses are maximized (ris-

ing ramps between minimum and maximum values of the available design data), fc and av

equalized to the target metrics obtained by simulating ideal interconnect circuits (triangle

with its apex at the target value), and rp is minimized (falling ramp between 0 and max-

imum value that can be tolerated for the circuit). The ideal metrics used to determine the

99

target values are presented in Table 4.9 along with the median values obtained from simu-

lation of all architectures tested. The optimization results are then rounded to the nearest

discrete values to obtain a valid input value. The vectors obtained as the result of rounding

are all candidate FPAA architectures. Then, each candidate architecture is evaluated again,

and sorted with respect to the desirability values. Since the polynomial regression models

predict the responses with some error, it is safer to choose and verify several architectures

rather than the best architecture alone. In this case, 20 best architectures are chosen to be

tested again using GRASPER and SPICE. After evaluating the simulation results of these

20 architectures using desirability functions, the best architecture was chosen.

Table 4.9. Comparison of the filter metrics for circuits connected with ideal interconnects and the
median of the routed circuit simulation results.

blp8 c1lp7 c2lp5 elp4
ideal fc 9976 7924 8298 9527

median fc 9976 7924 8891 10690
ideal av 0.564 2.593 0.132 -0.035

median av 0.892 5.791 4.439 3.254
ideal rp 0.384 10.832 0.208 2.579

median rp 3.171 17.360 0.923 3.011

First, architectures were optimized with respect to each of the four circuits individually.

This makes setting tight restrictions on each circuit’s performance metrics possible. Tables

4.10, 4.11, 4.12, and 4.13 present the polynomial model and GRASPER-SPICE simulation

results of the optimum architecture for the circuits blp8, c1lp7, c2lp5, and elp4 respectively.

The individual desirability values for each circuit are represented by d, whereas Dtotal stands

for the overall desirability when all circuits are considered. Of course, when only one

circuit is considered for optimization, Dtotal has to be equal to d of only that circuit. When

the architecture was optimized for each circuit individually, a maximum deviation of 0.67%

from the target fc (53 Hz for c1lp7) was observed for the optimized filter based on the

polynomial model. When evaluated with SPICE, the maximum deviation from target fc

becomes 4.5% (374 Hz for c2lp5). av and rp values have less accuracy than fc; however,

100

from a design point of view they mostly remained within reasonable margins for the types

of placed and routed circuits.

Table 4.10. Optimization of architectures with respect to blp8 only.

blp8 c1lp7 c2lp5 elp4
model sim model sim model sim model sim

fc 9978 9976 7136 7744 8383 7924 9754 9099
av 0.909 1.494 6.255 9.410 1.956 3.827 2.318 9.990
rp 2.003 3.073 9.300 10.754 0.994 1.250 2.651 5.430
swutil 1.099 1.299 1.093 1.196 1.103 1.262 0.992 1.092
wireutil 19.223 19.816 19.085 18.373 18.963 19.029 17.060 16.535
cmputil 13.132 13.281 13.135 13.281 14.699 14.844 13.150 13.281
d 0.740 0.728 0.000 0.600 0.657 0.567 0.626 0.000
D tot 0.740 0.728 0.740 0.728 0.740 0.728 0.740 0.728

Table 4.11. Optimization of architectures with respect to c1lp7 only.

blp8 c1lp7 c2lp5 elp4
model sim model sim model sim model sim

fc 10487 10690 7871 7924 8339 7744 9507 11194
av 0.863 0.867 6.399 6.049 4.518 2.542 2.689 -0.393
rp 1.894 1.291 11.566 11.450 0.618 0.066 3.318 1.298
swutil 1.047 1.018 1.020 1.026 1.033 1.018 0.929 0.902
wireutil 16.133 15.572 15.813 15.693 15.659 15.328 14.166 13.625
cmputil 10.712 10.625 10.711 10.625 11.973 11.875 10.712 10.625
d 0.000 0.000 0.601 0.678 0.512 0.000 0.563 0.000
D tot 0.601 0.678 0.601 0.678 0.601 0.678 0.601 0.678

Then, architectures were optimized for all circuits simultaneously. This was obviously

harder than optimizing for each circuit individually, so the initial optimization efforts us-

ing the constraints from the individual optimizations for each circuit were unsuccessful.

To achieve a solution, each circuit had to compromise to some extent, so that other circuits

would also work within acceptable ranges. The maximum frequency deviation allowed was

increased to 600 Hz for each circuit, and the results presented in Table 4.14 were obtained.

101

Table 4.12. Optimization of architectures with respect to c2lp5 only.

blp8 c1lp7 c2lp5 elp4
model sim model sim model sim model sim

fc 11041 10209 7564 7227 8334 7924 9092 8491
av 0.948 0.792 5.251 7.104 -0.477 0.478 1.496 0.113
rp 3.289 0.613 12.176 9.047 0.487 1.543 2.390 4.313
swutil 1.075 1.093 1.071 1.075 1.070 1.039 0.989 0.994
wireutil 15.943 16.145 15.857 15.904 15.619 15.181 14.314 14.458
cmputil 13.147 13.281 13.147 13.281 14.706 14.844 13.157 13.281
d 0.000 0.000 0.000 0.000 0.619 0.439 0.000 0.000
D tot 0.619 0.439 0.619 0.439 0.619 0.439 0.619 0.439

Table 4.13. Optimization of architectures with respect to elp4 only.

blp8 c1lp7 c2lp5 elp4
model sim model sim model sim model sim

fc 11648 11454 8288 8491 8634 9310 9518 9527
av 1.089 2.007 6.130 7.299 1.361 2.744 1.787 2.439
rp 3.406 5.082 15.529 13.765 1.492 0.442 3.394 4.173
swutil 1.517 1.649 1.462 1.575 1.479 1.438 1.347 1.364
wireutil 19.010 19.891 18.444 19.074 18.275 17.302 16.658 16.349
cmputil 13.138 13.281 13.145 13.281 14.706 14.844 13.157 13.281
d 0.000 0.000 0.000 0.000 0.000 0.000 0.690 0.677
D tot 0.690 0.677 0.690 0.677 0.690 0.677 0.690 0.677

102

As Table 4.14 demonstrates, when the architecture is optimized for all circuits simulta-

neously, fc deviates from the target fc between 1.6% and 5.6% based on the polynomial

models of the circuits, and between 2.3% and 6.7% when evaluated using SPICE. Note that

Dtotal in this case is the geometric mean of the individual d for each circuit.

Table 4.14. Optimization of architectures with respect to all circuits.

blp8 c1lp7 c2lp5 elp4
model sim model sim model sim model sim

fc 10531 10446 7400 7396 8016 7924 9379 9749
av 1.286 1.959 5.057 6.234 1.242 3.939 2.185 -0.166
rp 3.573 3.490 11.129 11.908 0.214 0.730 2.222 6.559
swutil 1.096 1.147 1.056 1.056 1.039 1.065 0.962 0.965
wireutil 18.608 19.468 18.168 18.067 17.482 17.927 16.037 16.246
cmputil 13.136 13.281 13.145 13.281 14.705 14.844 13.155 13.281
d 0.368 0.551 0.422 0.538 0.586 0.546 0.496 0.583
D tot 0.461 0.554 0.461 0.554 0.461 0.554 0.461 0.554

Table 4.15 presents the 9 input factors that define the resulting architectures obtained in

different optimizations. Dmodel and Dsim represent the overall desirabilities of the architec-

tures evaluated by the polynomial regression model and SPICE simulations respectively.

Since a probabilistic algorithm (SA) was used for optimization, different architectures may

be obtained with different attempts, each working within the limits that can be controlled

using the desirability functions.

Table 4.15. Architectures found as results of different optimizations.

sw hg v8 v4 v2 v1 hn OTA cap Dmodel Dsim

b only 0.875 8 0 2 11 4 1 1 1 0.740 0.728
c1 only 0.875 3 5 6 4 7 1 1 2 0.601 0.678
c2 only 0.750 3 9 4 8 5 4 1 1 0.619 0.439
e only 0.500 5 11 5 7 3 2 1 1 0.690 0.677
all 0.750 7 12 1 5 3 3 1 1 0.461 0.554

The objective of this study is to develop and present a systematic way for exploration

and evaluation of the optimum architecture for a given set of applications. The architecture

103

demands vary by the circuit classes and sizes, so their inclusion in the study will result in

different architectures to accommodate all circuits. Yet, the method presented here is easily

extendable to different circuit classes, as long as the performance of those circuits can be

efficiently evaluated within an automated platform as well.

104

CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

In this study, a placement and routing platform was developed for mapping analog

circuits onto a target FPAA device. The efforts to develop this platform started as the

RASPER tool which supported only RASP2.7 and RASP2.8 architectures, and eventually

evolved into the GRASPER tool, which supports a wide range of architectures including,

but not limited to RASP2.8 and RASP2.9. Replacement of manual switch list generating

efforts with this tool makes the FPAA technology more accessible to the design community

by reducing the design time as well as increasing the reliability of the design process. The

tool has been used in Georgia Tech research groups both for testing new FPAA architectures

and prototyping circuits on these architectures. The tool has also been used in the class

laboratories and workshops, establishing a community that grows steadily.

GRASPER allows input circuit netlist and user constraints description in a SPICE-

compatible format. The tool is modular, and can easily be integrated into systems that

perform other phases of the physical design. GRASPER is also based on a topology inde-

pendent routing resource graph, which makes it very flexible with a hardware description

format that was developed to describe a wide range of architectures.

Using floating-gate transistors as switches brings new opportunities to the circuit design

by utilizing the routing fabric as functional units rather than just for connection. Unlike the

binary operation of other switch technologies, floating-gate switches can be set to operate

in the intermediate regions between the extreme on and off; therefore, they can be used

as circuit components rather than just routing elements. Some circuits using this feature

of the switch elements, such as the diffusor circuits, were introduced in Chapter 2. On

the other hand, such circuits bring new challenges that were not previously addressed in

physical design. In the case of diffusors, GRASPER encounters floating nets (i.e. nets with

no source and sink wires described at the beginning of routing) since the pins of all nets

105

are not determined at the end of placement. These problems were addressed and solved in

Chapter 2.

GRASPER includes a module that can extract the routing parasitics of the mapped cir-

cuits, allowing simulation of the routed circuits using third party simulator software. This

can be useful for troubleshooting in case the routed circuits do not perform as expected. It

is not possible to probe every net of a circuit programmed on the FPAA, but this is not a

problem in simulation. Simulation results can also be used to guide the performance opti-

mization by trimming the configuration elements on the chip as well. Simulation models

are not hardcoded into the tool; therefore, models of different accuracy and complexity

levels can be used for different purposes. Using a technology file, new CAB component

models and process parameters for the transistors can be entered for different FPAAs. The

models that were available during the course of this study can be replaced with better mod-

els in the future, allowing more reliable simulation results.

The model order of the parasitic extracted circuit is left to the user control with the

option of choosing the minimum time constant, which is inversely proportional to the max-

imum frequency, of interest. By setting this value at the right level for the circuit’s range of

operation, the complexity of the resulting circuit is not increased unnecessarily.

GRASPER optimizes the analog circuit performance by taking the routing parasitics

into account, and minimizing the capacitance deviation from the intended values for each

net. Although the target net capacitance would be 0 in most cases, some circuits may

require certain capacitance values at each net for correct operation. Thus, the capacitance

coming from the routing effects may be used to advantage, reducing the need for drawn

CAB capacitors.

Parasitic modeling and flexible architecture description in GRASPER can be very use-

ful in the design of new FPAA architectures as well. Different topologies with varying re-

sources can be tested to determine the efficiency and the effectiveness of architectures. For

this reason, it is beneficial to prepare the device files for the planned architectures and test

106

them with the target circuits before designing the layout and fabricating the architectures,

significantly saving resources. The architectures can also be optimized for various circuit

classes and sizes using the systematic architecture exploration and evaluation method as

shown in Chapter 4.

5.1 Directions for Future Research

This research can be continued to explore and improve the following items:

• An integrated fast simulation engine can be developed and used in guiding the per-

formance optimization.

• Power analysis and optimization for placement and routing of circuits on FPAA can

be done.

• Different phases of physical design can be implemented, so that analog systems can

be designed on the FPAA starting from the level description of circuit behavior and

specifications. These steps can be analog synthesis as the analog domain equivalent

of logic synthesis in FPGA synthesis, and technology mapping to design the circuit

using the available FPAA components with the non-ideal effects of the CAB compo-

nents and routing resources taken into account.

• Optimization tasks can be distributed between the different levels of physical design.

These tasks may involve optimum I/O pin ordering and selection, and optimization of

component configuration via bias currents considering the possible routing parasitic

effects.

• A circuit library may be developed to make the design of larger systems easier.

• Benchmark suites should be developed for stable code improvement.

• Full digital support with inclusion of directional switches and digital performance

107

metrics extraction can be added, so that FPGAs can also be developed and evaluated,

eventually leading to FPMA support.

• With inclusion of digital circuit support, there are opportunities in optimization for

asynchronous circuit design by intelligently controlling the delays on floating-gate

based switches.

• FPAA architecture design can be automated from the GRASPER device files. It’s a

good practice to test the conceptual architectures before proceeding with their design

and fabrication. Having such an automation tool will make the design process more

efficient and reliable.

108

APPENDIX A

GRASPER USER MANUAL

A.1 Running GRASPER

GRASPER can be executed by either command line entry or clicking on the executable

file. If input circuit file is not provided at execution, user will be prompted to enter one:

> grasper <path to input file>

A.2 Input files

GRASPER requires three files to place and route a circuit onto the target FPAA. These files

are:

• A device file that contains FPAA architecture description. This file is described in

further detail in Appendix B.

• A technology file that contains SPICE model information for components in the

FPAA. Each FPAA component may be a single electrical element like a transistor, or

a circuit block like an OTA. All used FPAA components must be specified as SPICE

subcircuits in this file.

• An input file that contains description of the circuit that will be mapped onto the

FPAA. This file uses the same circuit description format as SPICE.

GRASPER input file is written in such a way that it can also be simulated by SPICE

software as well. However, all element types that can be used in a SPICE file are not avail-

able in GRASPER. User may enter only the components available in the device file for a

given FPAA architecture as subcircuit instantiations similar to SPICE. Subcircuit models

for these components must be described in the technology file as mentioned above. Param-

eters can be used to configure the FPAA components if needed.

109

Example: X1 innet p innet n outnet OTA PARAMS: Ib=1u

X2 pin d pin g pin s NFET RASP2 8

Xcap1 p1 p2 C500F

GRASPER allows user-defined subcircuits that are built using the FPAA components to

describe larger circuit blocks. It is also possible to include circuits described in a separate

file using the SPICE command:

.include <include file>

so that design libraries can be easily maintained and used.

Like in SPICE, any portion of a line after “*” is commented out unless that line starts

with the sequence “∗ >>” to enter GRASPER specific commands, which is explained in

the next section.

A.3 GRASPER commands

GRASPER commands are the keywords incompatible with SPICE, and they are entered

following the keyword “∗ >>”. Below is a list of various GRASPER commands:

∗ >> devicefile <filename>

Specifies the path to device file.

∗ >> project <directoryname>

Specifies the path to project directory. All output and log files are saved in here.

∗ >> pin <pin info> net <net name>

Specifies pin assignments for each I/O net in the circuit. If chip name is not specified in the

pin info field, it is assumed that the first chip defined in the device file will be used.

Example: ∗ >> pin io lt 0 net nInp

∗ >> pin chip0 io lt 1 net nInn

∗ >> pin chip1 io rt 0 net nOut

∗ >> place <circuit component name> into <FPAA component name>

Specifies FPAA component assignments for each circuit component. FPAA component

110

names are a combination of chip name, cab name, and component index within its cab.

Example: ∗ >> place xotap into chip0 cab3 0 0

∗ >> place xotap into chip1 cab4 1 0

∗ >> route <net name> into <cab name>

Specifies switch assignments for each I/O net in the circuit. If cab name field does not

include name of the chip it belongs to, it is assumed that the first chip defined in the device

file will be used.

Example: ∗ >> route net net in1 0 14 0 52 14 14

∗ >> route swe Xswe1 232 46

∗ >> option <option name> <option value>

Specifies options that user may choose to carry out alternate operations when running

GRASPER. Option command is explained in more detail in the next section.

A.4 Options

To customize the GRASPER results, user may specify various options by the following

GRASPER command:

∗ >> option <option name> <option value>

When using this command, option name is a required field while option value is optional; if

only option name is specified, option value is assumed to be 1. Options that are unspecified

use default values.

The following options are used to display a group of elements or information related to

GRASPER operation:

• displaycmp Lists FPAA components.

• displaynets Lists nets in the circuit graph.

• displaypins Lists pins in the circuit graph.

• displaycells Lists cells in the circuit graph.

111

• displayiocells Lists cells corresponding to the I/O ports.

• displayglobalcells Lists cells corresponding to the global nets.

• displayplacementstats Lists number of FPAA components and CABs used.

• displayswnets Lists routing switches and switch elements (swe) with associated nets;

configuration switches with associated cells.

• displayall Lists all circuit elements and FPAA components.

• displayswitchcount Displays number of wires and switches used.

• displaytiming Displays how long each phase takes to complete.

These options control how and where to log placement and routing information:

• log2file Logs all information in the <circuit name>.log file under the project direc-

tory if 1; to the terminal output otherwise (default 1).

• logdevice Logs FPAA related information after device setup.

• logsetup Logs circuit related information after circuit graph setup.

• logplacement Logs how circuit and device elements are affected by placement.

• logrouting Logs how circuit and device elements are affected by routing.

• logall Logs all phases.

These options determine additional (optional) output files:

• routingfile Writes the routing results in a netlist file where each net is assigned a

routing constraint denoting the switches it was routed through previously.

• placementfile Writes the placement results in a netlist file where each circuit compo-

nent is assigned a placement constraint denoting the FPAA component it was placed

to.

112

• placeonly Writes a placement file and exits before routing.

• extractedfile Writes a parasitic extracted SPICE file for simulation of routing effects.

These options are used to choose between the alternate methods for placement, routing,

and parasitic extraction:

• cabrankorder Chooses one of the four schemes for visiting FPAA components for

each circuit component. Circuit components tend to cluster close to the initial com-

ponents visited. 0 (default): forward (i.e. from bottom-left CAB to top-right CAB),

1: backward, 2: forward/backward alternating for each circuit component, 3: ran-

dom.

• reducedorder simplifies the parasitic extracted circuit (default 1).

• minResistance minimum interconnect resistance in parasitic extraction. Any resis-

tance below this value is assumed to be 0 (default 1e-6).

• minTau minimum period of the signals that can be reliably simulated after model

order reduction is applied to parasitic extracted circuits (default 100e-9).

A.5 Output files

The following files are generated when GRASPER runs. They can be found in the project

directory:

• <circuitname>.out Coordinates of the switches that establish the circuit connection

can be found in this file.

• <circuitname>.log Information collected during all phases of file parsing, place-

ment, and routing can be found in this file. User may decide what information to

be reported via the options explain in the previous section. If placement and routing

cannot be completed, error messages about the reason for the reason of failure and a

113

partial routing solution with the list of switches used for routing until that point can

also be found in this file. Including displayall and logall options is recommended for

a detailed inspection of the problem in such a case.

• <circuitname> placed.sp Placement results are saved in this file, which can also be

used as an input file for GRASPER. FPAA components associated with the circuit

components are specified using the placement constraint (∗ >> place), so placement

step is skipped when this file is used as GRASPER input.

• <circuitname> routed.sp Routing results are saved in this file. In addition to the

placement results, switches associated with each net or swe are specified using the

routing constraint (∗ >> route).

• <circuitname> ext.sp This file is a SPICE netlist that contains extracted parasitic

interconnects, and can be used to simulate the routing effects ono the performance

of the circuit. Accuracy of simulation results rely on the models provided in the

technology file.

A.6 Generating SPICE netlists from switch file

Circuit connectivity of the original SPICE netlist can be recreated using the -s option of

GRASPER from the command line. Since the original component and netnames cannot be

retrieved from the output switch file, the resulting netlist will not be identical to the origi-

nal netlist lexically. On the other hand, circuit connectivity remains the same. Device file

information is also not embedded in the switch file; therefore, it must be provided at the

command line entry. The resulting SPICE netlist is displayed at the standard output. Note

that this option is available only from the command line.

Format: > grasper -s switchfile -d devicefile

114

APPENDIX B

GRASPER ARCHITECTURE DESCRIPTION FORMAT

GRASPER requires a device file that defines the FPAA architecture by describing the in-

terconnect topology, component resources, and routing resources. Using this file, a wide

range of FPAA architectures can be used for placement and routing of circuits.

In the device file, vertical and horizontal dimensions are divided into grids that represent

the minimum distance between any two switches in that orientation. These grid numbers

are used to describe the physical locations on the FPAA. Coordinates (r,c) of a point are

given as the vertical grid number (row) first, and the horizontal grid number (column) next.

It is possible to enter vectors of numbers by providing the initial number, the final number,

and an optional increment (default increment value is 1 if not provided). For instance

”0:8:2” represents the vector [0 2 4 6 8]. To describe a vector of points, either row number

or column number (both not both at the same time) can be vectorized as well.

There are three keyword types in the FPAA device file:

• element types that declare the properties of FPAA resource types.

• elements that instantiate FPAA resources.

• other commands used for describing the geometry or other aspects of certain FPAA

resources.

B.1 element types

The following keywords are used to describe the element types.

iopintype name { cost pin(0) cost value; };

Descriptions of chip I/O pins. Cost for connecting to each pin can be entered via the cost

keyword. Example:

115

iopintype IOPAD { cost pin(0) 1000; };

iopingroup name orientation grid number

I/O pins that are horizontally or vertically aligned whith each other are grouped using this

command. Having this command makes it easier for humans to interpret I/O pin locations.

Use h for horizontal and v for vertical orientations, followed by the horizontal or vertical

coordinates (grid numbers) for the pins in group. Examples:

iopingroup io lt h 0

iopingroup io up v 366

cmptype name number of pins { param ... ; cost pin(x)... ; };

Names and pin numbers for CAB component types are declared using this command. Pin

cost can be entered using the cost keyword for each pin (in the same fashion as iopintype).

If component has parameters, enter them in the same order as the circuit description in

SPICE using param keyword (see below for more details on using param). Example:

cmptype FGOTA 3 {

param Ib;

param fgv2i(valn);

param fgv2i(valp);

};

swtype name { ... };

Type info for switches used in FPAA. Using the format keyword, how switches will be

written in the output file can be shaped (see below for more details on using format). Using

the cap keyword, off-capacitance for switch can be entered. Example:

swtype RSW { format r c const(1.8); cap 1e-15; };

swetype name { param ...; format ...; }

116

Type info for switch elements (SWE) supported in FPAA. Since this element type is a

physical switch, format keyword can be used similar to its use for swtype. Since SWE

correspond to components in the circuit description, param keyword can be used similar to

its use for cmptype. Example:

swetype FGE1 {

param vg;

format r c val(0);

};

wiretype name orientation length { res ...; cap ...; };

Type info for wires of different length and orientation in FPAA. Length of wire is specified

in number of spanned grids. Resistance and capacitance of wire segments per grid can also

be specified using res and cap keywords. Example:

wiretype hgwire hor 142 { res 0.5; cap 1e-17; };

cabtype name number of pins vertical length horizontal length { ... };

Type info for different CABs that can be found in FPAA. Components of the CABs are

instantiated within the braces of cabtype. Example:

cabtype cab1a 41 41 2 ... ;

chiptype name vertical length horizontal length { ... }

Type info for chip(s) that can be found in FPAA (or multi-chip board). CABs, wires,

switches, and I/O pins of the chip(s) are instantiated within the braces of chiptype. Exam-

ple:

chiptype ct1 367 144 {

cab ...;

wire ...;

117

switch ...;

iopin ...;

};

B.2 elements

The following keywords are used to describe the elements.

cmp cmptype cabpinnumbers configuration switches;

Instantiates components in a cabtype. Configuration switches can be added in the order of

parameters they are associated with. Each configuration switch is introduced by the switch

type name and switch coordinates relative to the CAB that contains the component. Exam-

ple:

cmp OTA 39 40 38 CSW(38,0);

wire wiretype(id) bottom left point;

Instantiates wires in FPAA by providing the wire type, an id for the wire within the context

of its type, and the coordinates of bottom left point of the wire. Example:

wire hgwire(0:3) (0:3,0);

cab cabname cabtype bottom left point { pins(...) wires; };

Instantiates CABs in a chip. Each pin of the CAB must be connected to a wire. Example:

cab cab0 0 cab1a (4,32) { pins(0:40) clwire1(0:40); }; switch switch type at matrix ...;

or

switch switch type wire1 id to wire2 id at ...;

Instantiates routing switches in a chip. Entry can either be a matrix that marks the switches

to be placed if two perpendicular wires intersect at that point, or between any two wires by

indicating the switch coordinates. Example:

switch RSW at matrix m3 (4:326:46,0);

118

switch RSW vlwire(4:7) to vlwire(0:3) at (45,24:27);

iopin iopintype iopingroup id wire id;

Instantiates I/O pins of a chip. Each I/O pin is numbered from an iopingroup. Each I/O

pin is connected to a wire in the same chip. I/O pin - wire associations can be vectorized.

Example:

iopin IOPAD io lt(2:8) hgwire(4:28:4);

chip chipname chiptype bottom row left column;

Instantiates a chip of a chiptype also described in the device file. Example:

chip chip0 ct1 0 0;

B.3 other commands

matrix name row number column number { ... };

Defines a matrix to describe multiple points easily. Points are described for each row. Vec-

torization is useful when there are repeating patterns. Example:

matrix m1 4 32 {

row(0:2:2) 0:30:2;

row(1:3:2) 1:31:2;

};

merge wire1 wire2;

Establishes physical connection between two wires. Example:

merge hnwire(0:31) hnwire(32:63);

global netname wire

Declares global net names associated with wire(s). This command is useful for power con-

nections. If multiple wires are associated with the same net using global command, all of

them are merged. Example:

global Vdd vgwire(1:37:12);

119

format ...;

Describes the format of the switches to be written in the output file using the keywords r

for row, c for column, const for a constant value, and val for a variable value to be received

from the parameter list of the associated component (for configuration switches or switch

elements). Example:

format r c const(1.8);

format r c val(0);

param ...;

Allows parameter entry for CAB components or switch elements. Parameter values can be

determined either directly from the circuit netlist line, or by transforming the netlist line

value using the built in fgv2i function that finds current equivalent of a voltage. Example:

param Ib;

param fgv2i(valn);

120

APPENDIX C

SPICE NETLISTS FOR SOME OF THE GMC FILTERS USED AS
TEST CIRCUITS

Netlist for blp8:

*gmC filter netlist for butterworth low 10000 Hz (order 8)

vin 2 0 dc 1.2 ac 1

vref 1 0 1.2

C1 3 0 1p

X1 2 1 3 OTA PARAMS: Ib=4.713496e-009

X3 1 3 3 OTA PARAMS: Ib=9.303887e-009

X5 1 4 3 OTA PARAMS: Ib=4.713496e-009

C4 4 0 1p

X7 3 1 4 OTA PARAMS: Ib=4.713496e-009

C5 5 0 1p

X9 4 1 5 OTA PARAMS: Ib=4.713496e-009

X11 1 5 5 OTA PARAMS: Ib=7.872838e-009

X13 1 6 5 OTA PARAMS: Ib=4.713496e-009

C6 6 0 1p

X15 5 1 6 OTA PARAMS: Ib=4.713496e-009

C7 7 0 1p

X17 6 1 7 OTA PARAMS: Ib=4.713496e-009

X19 1 7 7 OTA PARAMS: Ib=5.241477e-009

X21 1 8 7 OTA PARAMS: Ib=4.713496e-009

121

C8 8 0 1p

X23 7 1 8 OTA PARAMS: Ib=4.713496e-009

C9 9 0 1p

X25 8 1 9 OTA PARAMS: Ib=4.713496e-009

X27 1 9 9 OTA PARAMS: Ib=1.828414e-009

X29 1 10 9 OTA PARAMS: Ib=4.713496e-009

C10 10 0 1p

X31 9 1 10 OTA PARAMS: Ib=4.713496e-009

*gmC filter with 8 caps and 32 OTA

.include fpaa tech.sp

Xout 10 filter output filter output OTA PARAMS: Ib=10u

.control

op

let isrc =@Vddsrc[i]

ac dec 100 500 500k

*plot vdb(filter output)

let outnode = v(filter output)

write rawfile.txt isrc outnode

.endc

*configuration files (can also be entered in the command line)

∗ >> devicefile archgen.dev

∗ >> project work

122

*i/o connections

∗ >> pin io lt 0 net 1

∗ >> pin io lt 1 net 2

∗ >> pin io rt 1 net filter output

*user constraints

∗ >> option displayswitchcount

∗ >> option displaytiming

∗ >> option displayplacementstats

∗ >> option displaycells

∗ >> option displaynets

∗ >> option displayswnets

∗ >> option logall

∗ >> option extractedfile

.end

Netlist for c1lp7:

*gmC filter netlist for chebyshev low 10000 Hz (order 7)

vin 2 0 dc 1.2 ac 1

vref 1 0 1.2

C3 3 0 1p

X1 2 1 3 OTA PARAMS: Ib=4.713496e-009

123

X3 1 3 3 OTA PARAMS: Ib=1.197053e-009

C4 4 0 1p

X5 3 1 4 OTA PARAMS: Ib=4.713496e-009

X7 1 4 4 OTA PARAMS: Ib=2.165271e-009

X9 1 5 4 OTA PARAMS: Ib=2.364818e-009

C5 5 0 1p

X11 4 1 5 OTA PARAMS: Ib=2.364818e-009

C6 6 0 1p

X13 5 1 6 OTA PARAMS: Ib=9.414782e-009

X15 1 6 6 OTA PARAMS: Ib=1.495130e-009

X17 1 7 6 OTA PARAMS: Ib=3.872610e-009

C7 7 0 1p

X19 6 1 7 OTA PARAMS: Ib=3.872610e-009

C8 8 0 1p

X21 7 1 8 OTA PARAMS: Ib=5.737742e-009

X23 1 8 8 OTA PARAMS: Ib=5.273019e-010

X25 1 9 8 OTA PARAMS: Ib=4.751561e-009

C9 9 0 1p

X27 8 1 9 OTA PARAMS: Ib=4.751561e-009

X29 1 10 10 OTA PARAMS: Ib=2.000000e-005

X31 9 1 10 OTA PARAMS: Ib=1.976841e-007

*gmC filter with 7 caps and 32 OTAs

.include fpaa tech.sp

Xout 10 filter output filter output OTA PARAMS: Ib=10u

124

.control

op

let isrc =@Vddsrc[i]

ac dec 100 500 500k

*plot vdb(filter output)

let outnode = v(filter output)

write rawfile.txt isrc outnode

.endc

*configuration files (can also be entered in the command line)

∗ >> devicefile archgen.dev

∗ >> project work

*i/o connections

∗ >> pin io lt 0 net 1

∗ >> pin io lt 1 net 2

∗ >> pin io rt 1 net filter output

*user constraints

∗ >> option displayswitchcount

∗ >> option displaytiming

∗ >> option displayplacementstats

∗ >> option displaycells

∗ >> option displaynets

∗ >> option displayswnets

∗ >> option logall

125

∗ >> option extractedfile

.end

Netlist for c2lp5:

*gmC filter netlist for inverse chebyshev low 10000 Hz (order 5)

vin 2 0 dc 1.2 ac 1

vref 1 0 1.2

C3 3 0 1p

X1 2 1 3 OTA PARAMS: Ib=4.713496e-009

X3 1 3 3 OTA PARAMS: Ib=7.451028e-009

C4 4 0 1p

X5 3 1 4 OTA PARAMS: Ib=4.713496e-009

X7 1 4 4 OTA PARAMS: Ib=6.484821e-009

X9 1 5 4 OTA PARAMS: Ib=5.453171e-009

C5 5 0 1p

X11 4 1 5 OTA PARAMS: Ib=5.453171e-009

C6 6 0 1p

X13 3 1 6 OTA PARAMS: Ib=4.713496e-009

X15 1 4 6 OTA PARAMS: Ib=6.484821e-009

X17 5 1 6 OTA PARAMS: Ib=6.373639e-009

X19 1 6 6 OTA PARAMS: Ib=1.404063e-009

X21 1 7 6 OTA PARAMS: Ib=4.117681e-009

C7 7 0 1p

126

X23 6 1 7 OTA PARAMS: Ib=4.117681e-009

X25 1 8 8 OTA PARAMS: Ib=2.000000e-005

X27 3 1 8 OTA PARAMS: Ib=5.868504e-006

X29 1 4 8 OTA PARAMS: Ib=1.013566e-005

X31 5 1 8 OTA PARAMS: Ib=9.834229e-006

X33 1 6 8 OTA PARAMS: Ib=9.223396e-007

X35 7 1 8 OTA PARAMS: Ib=1.336546e-006

*gmC filter with 5 caps and 36 OTAs

.include fpaa tech.sp

Xout 8 filter output filter output OTA PARAMS: Ib=10u

.control

op

let isrc =@Vddsrc[i]

ac dec 100 500 500k

*plot vdb(filter output)

let outnode = v(filter output)

write rawfile.txt isrc outnode

.endc

*configuration files (can also be entered in the command line)

∗ >> devicefile archgen.dev

∗ >> project work

127

*i/o connections

∗ >> pin io lt 0 net 1

∗ >> pin io lt 1 net 2

∗ >> pin io rt 1 net filter output

*user constraints

∗ >> option displayswitchcount

∗ >> option displaytiming

∗ >> option displayplacementstats

∗ >> option displaycells

∗ >> option displaynets

∗ >> option displayswnets

∗ >> option logall

∗ >> option extractedfile

.end

Netlist for elp4:

*gmC filter netlist for elliptic low 10000 Hz (order 4)

vin 2 0 dc 1.2 ac 1

vref 1 0 1.2

C3 3 0 1p

X1 2 1 3 OTA PARAMS: Ib=4.713496e-009

X3 1 3 3 OTA PARAMS: Ib=4.665900e-009

128

X5 1 4 3 OTA PARAMS: Ib=3.911073e-009

C4 4 0 1p

X7 3 1 4 OTA PARAMS: Ib=3.911073e-009

C5 5 0 1p

X9 2 1 5 OTA PARAMS: Ib=4.713496e-009

X11 1 3 5 OTA PARAMS: Ib=4.665900e-009

X13 4 1 5 OTA PARAMS: Ib=2.480647e-008

X15 1 5 5 OTA PARAMS: Ib=6.740603e-010

X17 1 6 5 OTA PARAMS: Ib=4.828512e-009

C6 6 0 1p

X19 5 1 6 OTA PARAMS: Ib=4.828512e-009

X21 1 7 7 OTA PARAMS: Ib=2.000000e-005

X23 1 3 7 OTA PARAMS: Ib=5.252638e-007

X25 4 1 7 OTA PARAMS: Ib=6.089450e-006

X27 1 5 7 OTA PARAMS: Ib=5.780755e-008

X29 6 1 7 OTA PARAMS: Ib=1.373561e-007

X31 2 1 7 OTA PARAMS: Ib=5.321490e-007

*gmC filter with 4 caps and 32 OTAs

.include fpaa tech.sp

Xout 7 filter output filter output OTA PARAMS: Ib=10u

.control

op

let isrc =@Vddsrc[i]

129

ac dec 100 500 500k

*plot vdb(filter output)

let outnode = v(filter output)

write rawfile.txt isrc outnode

.endc

*configuration files (can also be entered in the command line)

∗ >> devicefile archgen.dev

∗ >> project work

*i/o connections

∗ >> pin io lt 0 net 1

∗ >> pin io lt 1 net 2

∗ >> pin io rt 1 net filter output

*user constraints

∗ >> option displayswitchcount

∗ >> option displaytiming

∗ >> option displayplacementstats

∗ >> option displaycells

∗ >> option displaynets

∗ >> option displayswnets

∗ >> option logall

∗ >> option extractedfile

.end

130

REFERENCES

[1] H. Chen, I. Li-Da Huang, M. Liu, and M. Wong, “Simultaneous Power Supply Plan-
ning and Noise Avoidance in Floorplan Design,” IEEE Transactions On Computer-
Aided Design Of Integrated Circuits And Systems, vol. 24, no. 4, 2005.

[2] T. Hall, C. Twigg, P. Hasler, and D. Anderson, “Developing large-scale field-
programmable analog arrays,” Parallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International, 2004.

[3] P. Hasler, C. Diorio, B. Minch, and C. Mead, “Single Transistor Learning Synapses,”
Advances In Neural Information Processing Systems, pp. 817–826, 1995.

[4] M. Kucic, P. Hasler, J. Dugger, and D. Anderson, “Programmable and adaptive ana-
log filters using arrays of floating-gate circuits,” in 2001 Conference on Advanced
Research in VLSI (E. Brunvand and C. Myers, eds.), pp. 148–162, IEEE Computer
Society, March 2001.

[5] M. Kucic, A. Low, P. Hasler, and J. Neff, “A programmable continuous-time floating-
gate Fourier processor,” Circuits and Systems II: Analog and Digital Signal Process-
ing, IEEE Transactions on [see also Circuits and Systems II: Express Briefs, IEEE
Transactions on], vol. 48, no. 1, pp. 90–99, 2001.

[6] J. Gray, C. Twigg, D. Abramson, and P. Hasler, “Characteristics and programming
of floating-gate pFET switches in an FPAA crossbar network,” Circuits and Systems,
2005. ISCAS 2005. IEEE International Symposium on, pp. 468–471, 2005.

[7] A. Arbel, “Current operated nucleonic modules,” Nuclear Instruments and Methods,
vol. 32, pp. 341–346, 1965.

[8] R. Joetten, T. Web, J. Wolters, H. Ring, and B. Bjoernsson, “A New Real Time Sim-
ulator for Power System Studies,” IEEE Transactions on Power Apparatus and Sys-
tems, pp. 2604–2611, 1985.

[9] D. Vallancourt and Y. Tsividis, ““Timing-Controlled Switched Analog Filters with
Full Digital Programmability.”,” IEEE ISCAS 1987, pp. 329–333, 1987.

[10] S. Eberhardt, T. Duong, and A. Thakoor, “Design of parallel hardware neural network
systems from customanalog VLSIbuilding block’chips,” in Neural Networks, 1989.
IJCNN., International Joint Conference on, pp. 183–190, 1989.

[11] W. Fisher, R. Fujimoto, and R. Smithson, “A programmable analog neural network
processor,” IEEE Transactions on Neural Networks, vol. 2, no. 2, pp. 222–229, 1991.

131

[12] J. Van der Spiegel, P. Mueller, D. Blackman, P. Chance, C. Donham, R. Etienne-
Cummings, and P. Kinget, “An analog neural computer with modular architecture for
real-time dynamic computations,” IEEE Journal of Solid-State Circuits, vol. 27, no. 1,
pp. 82–92, 1992.

[13] J. Choi, S. Bang, and B. Sheu, “A programmable analog VLSI neural network pro-
cessor for communication receivers,” IEEE Transactions on Neural Networks, vol. 4,
no. 3, pp. 484–495, 1993.

[14] R. Chang, B. Sheu, J. Choi, and D. Chen, “Programmable-weight building blocks
for analog VLSI neural network processors,” Analog Integrated Circuits and Signal
Processing, vol. 9, no. 3, pp. 215–230, 1996.

[15] L. Chua and L. Yang, “Cellular neural networks: Theory,” IEEE Transactions on
circuits and systems, vol. 35, no. 10, pp. 1257–1272, 1988.

[16] T. Roska and L. Chua, “The CNN universal machine: an analogic array computer,”
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
vol. 40, no. 3, pp. 163–173, 1993.

[17] M. Sivilotti, “A dynamically configurable architecture for prototyping analog cir-
cuits,” in Proceedings of the fifth MIT conference on Advanced research in VLSI table
of contents, pp. 237–258, MIT Press Cambridge, MA, USA, 1988.

[18] F. Kub, K. Moon, I. Mack, and F. Long, “Programmable analog vector-matrix multi-
pliers,” IEEE Journal of Solid-State Circuits, vol. 25, no. 1, pp. 207–214, 1990.

[19] E. Lee and P. Gulak, “Prototype Design of a Field Programmable Analog Array,” Aug,
vol. 30, pp. 1–2, 1990.

[20] E. Lee and P. Gulak, “A CMOS field-programmable analog array,” Solid-State Cir-
cuits, IEEE Journal of, vol. 26, no. 12, pp. 1860–1867, 1991.

[21] E. Lee and P. Gulak, “Field programmable analogue array based on MOSFET
transconductors,” Electronics Letters, vol. 28, no. 1, pp. 28–29, 1992.

[22] E. Lee and P. Gulak, “A transconductor-based field-programmable analog array,” in
Solid-State Circuits Conference, 1995. Digest of Technical Papers. 42nd ISSCC, 1995
IEEE International, pp. 198–199, 1995.

[23] Z. Czarnul, “Novel MOS resistive circuit for synthesis of fully integrated continuous-
time filters,” IEEE Transactions on Circuits and Systems, vol. 33, no. 7, pp. 718–721,
1986.

[24] E. Pierzchala, M. Perkowski, P. Van Halen, and R. Schaumann, “Current-mode am-
plifier/integrator for a field-programmable analogarray,” Solid-State Circuits Con-
ference, 1995. Digest of Technical Papers. 42nd ISSCC, 1995 IEEE International,
pp. 196–197, 1995.

132

[25] E. Pierzchala, M. Perkowski, and S. Grygiel, “A field programmable analog array
for continuous, fuzzy, andmulti-valued logic applications,” in Multiple-Valued Logic,
1994. Proceedings., Twenty-Fourth International Symposium on, pp. 148–155, 1994.

[26] C. Premont, R. Grisel, N. Abouchi, and J. Chante, “A Current Conveyor based Field
Programmable Analog Array,” Analog Integrated Circuits and Signal Processing,
vol. 17, no. 1, pp. 105–124, 1998.

[27] X. Quan, S. Embabi, and E. Sanchez-Sinencio, “A current-mode based field pro-
grammable analog array architecture for signal processing applications,” in Custom
Integrated Circuits Conference, 1998., Proceedings of the IEEE 1998, pp. 277–280,
1998.

[28] A. Bratt and I. Macbeth, “Design and implementation of a field programmable ana-
logue array,” in Proceedings of the 1996 ACM fourth international symposium on
Field-programmable gate arrays, pp. 88–93, ACM New York, NY, USA, 1996.

[29] H. Klein, “The EPAC architecture: an expert cell approach to field programmable
analog devices,” Analog Integrated Circuits and Signal Processing, vol. 17, no. 1,
pp. 91–103, 1998.

[30] H. Kutuk and S. Kang, “A switched capacitor approach to field-programmable analog
array (FPAA) design,” Analog Integrated Circuits and Signal Processing, vol. 17,
no. 1, pp. 51–65, 1998.

[31] E. Lee and W. Hui, “A Novel Switched-Capacitor Based Field-Programmable Analog
Array Architecture,” Analog Integrated Circuits and Signal Processing, vol. 17, no. 1-
2, pp. 35–50, 1998.

[32] S. Chang, B. Hayes-Gill, and C. Paull, “Multi-function block for a switched current
field programmable analogue array,” in IEEE 39th Midwest symposium on Circuits
and Systems, 1996., vol. 1, 1996.

[33] Anadigm, “Anadigm Designer.” http://www.anadigm.com; accessed July 16,
2009.

[34] P. Chow and P. Gulak, “A Field-Programmable Mixed-Analog-Digital Array,” Field-
Programmable Gate Arrays, 1995. FPGA’95. Proceedings of the Third International
ACM Symposium on, pp. 104–109, 1995.

[35] C. Zhang, A. Bratt, and I. Macbeth, “A New Field Programmable Mixed-Signal Array
and Its Applications,” The 4th Canadian Workshop on Field-Programmable Devices,
pp. 132–137, 1996.

[36] R. Edwards, K. Strohbehn, and S. Jaskulek, “A field-programmable mixed-signal ar-
ray architecture using anti-fuse interconnects,” in Circuits and Systems, 2000. Pro-
ceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, vol. 3,
2000.

133

http://www.anadigm.com

[37] D. D’Mello and P. Gulak, “Design Approaches to Field-Programmable Analog In-
tegrated Circuits,” Analog Integrated Circuits and Signal Processing, vol. 17, no. 1,
pp. 7–34, 1998.

[38] A. Stoica, R. Zebulum, D. Keymeulen, R. Tawel, T. Daud, and A. Thakoor, “Re-
configurable VLSI architectures for evolvable hardware: fromexperimental field pro-
grammable transistor arrays to evolution-oriented chips,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 9, no. 1, pp. 227–232, 2001.

[39] J. Luo, J. Bernstein, J. Tuchman, H. Huang, K. Chung, and A. Wilson, “A High Per-
formance Radiation-Hard Field Programmable Analog Array,” in Quality Electronic
Design, 2004. Proceedings. 5th International Symposium on, pp. 522–527, 2004.

[40] J. Becker and Y. Manoli, “A continuous-time field programmable analog array
(FPAA) consisting of digitally reconfigurable G/sub M/-cells,” in Circuits and Sys-
tems, 2004. ISCAS’04. Proceedings of the 2004 International Symposium on, vol. 1,
2004.

[41] T. Slaughter and C. Stroud, “Fault injection emulation for field programmable analog
arrays,” in Mixed-Signal Design, 2003. Southwest Symposium on, pp. 212–216, 2003.

[42] T. Balen, A. Andrade Jr, F. Azaı̈s, M. Lubaszewski, and M. Renovell, “An Approach
to the Built-In Self-Test of Field Programmable Analog Arrays,” in VLSI Test Sympo-
sium, 2004. Proceedings. 22nd IEEE, pp. 383–388, 2004.

[43] H. Wang and S. Vrudhula, “Behavioral synthesis of field programmable analog array
circuits,” ACM Transactions on Design Automation of Electronic Systems (TODAES),
vol. 7, no. 4, pp. 563–604, 2002.

[44] S. Ganesan and R. Vemuri, “Behavioral partitioning in the synthesis of mixed analog-
digital systems,” Proc. Design Automation Conference, pp. 133–138, 2001.

[45] S. Ganesan and R. Vemuri, “Technology mapping and retargeting for field-
programmable analog arrays,” Proceedings of the conference on Design, automation
and test in Europe, pp. 58–65, 2000.

[46] S. Ganesan and R. Vemuri, “A methodology for rapid prototyping of analog systems,”
International Conference on Computer Design, pp. 482–488, 1999.

[47] H. Wang, S. Vrudhula, and O. Palusinski, “performance driven placement and rout-
ing for field programmable analog arrays,” in Proc. Intl. Conf. on Mixed Design of
Integrated Circuits and Systems, pp. 207–212, 2001.

[48] S. Ganesan and R. Vemuri, “FAAR: A Router for Field-Programmable Analog Ar-
rays,” Proc. Intl. Conf. on VLSI Design, pp. 556–563, 1999.

[49] J. Cong and Y. Ding, “FlowMap: an optimal technology mapping algorithm for de-
layoptimization in lookup-table based FPGA designs,” Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on, vol. 13, no. 1, pp. 1–12, 1994.

134

[50] J. Cong and Y. Ding, “Combinational logic synthesis for LUT based field pro-
grammable gate arrays,” ACM Transactions on Design Automation of Electronic Sys-
tems (TODAES), vol. 1, no. 2, pp. 145–204, 1996.

[51] S. Thakur, Y. Chang, D. Wong, and S. Muthukrishnan, “Algorithms for an FPGA
Switch Module Routing Problem with Application to Global Routing,” IEEE TRANS-
ACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND
SYSTEMS, vol. 16, pp. 32–46, 1997.

[52] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool for FPGA
research,” LECTURE NOTES IN COMPUTER SCIENCE, pp. 213–222, 1997.

[53] S. Nag and R. Rutenbar, “Performance-driven simultaneous placement and routing for
FPGA’s,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, vol. 17, no. 6, pp. 499–518, 1998.

[54] N. Togawa, M. Yanagisawa, and T. Ohtsuki, “Maple-opt: A Performance-Oriented
Simultaneous Technology Mapping, Placement, and Global Routing Algorithm for
FPGA’s,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 17, no. 9, pp. 803–818, 1998.

[55] C. Ebeling, L. McMurchie, S. Hauck, and S. Burns, “Placement and routing tools for
the Triptych FPGA,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 3, no. 4, pp. 473–482, 1995.

[56] M. Pedram, B. Nobandegani, and B. Preas, “Design and analysis of segmented routing
channels for row-basedFPGA’s,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 13, no. 12, pp. 1470–1479, 1994.

[57] J. Cong and C. Wu, “An efficient algorithm for performance-optimal FPGA tech-
nologymapping with retiming,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 17, no. 9, pp. 738–748, 1998.

[58] J. Cong and Y. Hwang, “Boolean matching for LUT-based logic blocks with applica-
tions toarchitecture evaluation and technology mapping,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 20, no. 9, pp. 1077–1090,
2001.

[59] U. Berkeley, “Berkeley logic interchange format (BLIF),” Oct Tools Distribution,
vol. 2.

[60] A. Vladimirescu, “SPICE-the fourth decade analog and mixed-signal simulation-a
stateof the art,” in Semiconductor Conference, 1999. CAS’99 Proceedings. 1999 In-
ternational, vol. 1, 1999.

[61] T. Hall, P. Hasler, and D. Anderson, “FieldProgrammable Analog Arrays: AFloating-
Gate Approach,” Field-programmable Logic and Applications: Reconfigurable Com-
puting is Going Mainstream: 12th International Conference, FPL 2002, Montpellier,
France, September 2-4, 2002: Proceedings, 2002.

135

[62] P. Allen and D. Holberg, CMOS Analog Circuit Design. Oxford University Press,
2002.

[63] T. Hall, C. Twigg, P. Hasler, and D. Anderson, “Application performance of elements
in a floating-gate FPAA,” Circuits and Systems, 2004. ISCAS’04. Proceedings of the
2004 International Symposium on, vol. 2, 2004.

[64] P. Gray and R. Meyer, Analysis and Design of Analog Integrated Circuits. John Wiley
& Sons, Inc. New York, NY, USA, 1990.

[65] A. Basu, C. Twigg, S. Brink, P. Hasler, C. Petre, S. Ramakrishnan, S. Koziol, and
C. Schlottmann, “RASP 2.8: A New Generation of Floating-gate based Field Pro-
grammable Analog Array,” in IEEE Custom Integrated Circuits Conference, 2008.
CICC 2008, pp. 213–216, 2008.

[66] F. Baskaya, S. Reddy, S. Lim, and D. Anderson, “Placement for large-scale floating-
gate field-programable analog arrays,” IEEE transactions on very large scale integra-
tion(VLSI) systems, vol. 14, no. 8, pp. 906–910, 2006.

[67] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph parti-
tioning: applications in VLSI domain,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 7, no. 1, pp. 69–79, 1999.

[68] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by Simulated Annealing,”
Science, vol. 220, no. 4598, pp. 671–680, 1983.

[69] L. McMurchie and C. Ebeling, “Wirec 3.2 Tutorial and Reference Manual.”

[70] L. McMurchie and C. Ebeling, “PathFinder: a negotiation-based performance-driven
router for FPGAs,” in Proceedings of the 1995 ACM third international symposium
on Field-programmable gate arrays, pp. 111–117, ACM New York, NY, USA, 1995.

[71] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. Fang, and J. Rose, “VPR 5.0:
FPGA cad and architecture exploration tools with single-driver routing, heterogeneity
and process scaling,” Field-Programmable Gate Arrays, 2009. Proceedings of the
17th International ACM/SIGDA Symposium on, pp. 133–142, 2009.

[72] C. Lee, “An algorithm for path connection and its application IRE Trans,” Electronic
Computer, vol. 10, pp. 346–365, 1961.

[73] C. Twigg, J. Gray, and P. Hasler, “Programmable Floating Gate FPAA Switches Are
Not Dead Weight,” in Circuits and Systems, 2007, ISCAS 2007 IEEE International
Symposium on Circuits and Systems, pp. 169–172, 2007.

[74] F. Baskaya, B. Gestner, C. Twigg, S. Lim, D. Anderson, and P. Hasler, “Rapid Pro-
totyping of Large-scale Analog Circuits With Field Programmable Analog Array,”
Field-Programmable Custom Computing Machines, 2007. FCCM 2007. 15th Annual
IEEE Symposium on, pp. 319–320, 2007.

136

[75] T. Laxminidhi and S. Pavan, “Design Centering High Frequency Integrated
Continuous-Time Filters,” Circuits and Systems, 2007. ISCAS 2007. IEEE Interna-
tional Symposium on, pp. 1939–1942, 2007.

[76] M. Smith, “WinSpice.” http://www.winspice.co.uk; accessed July 16, 2009.

[77] B. Sheehan, “TICER: Realizable reduction of extracted RC circuits,” in Proceedings
of the 1999 IEEE/ACM international conference on Computer-aided design, pp. 200–
203, IEEE Press Piscataway, NJ, USA, 1999.

[78] B. Mei, A. Lambrechts, J. Mignolet, D. Verkest, and R. Lauwereins, “Architecture
exploration for a reconfigurable architecture template,” IEEE Design & Test of Com-
puters, vol. 22, no. 2, pp. 90–101, 2005.

[79] K. Siozios, A. Bartzas, and D. Soudris, “Architecture-Level Exploration of Alterna-
tive Interconnection Schemes Targeting 3D FPGAs: A Software-Supported Method-
ology,” International Journal of Reconfigurable Computing, 2008.

[80] K. Siozios, K. Tatas, G. Koutroumpezis, D. Soudris, and A. Thanailakis, “An in-
tegrated framework for architecture level exploration of reconfigurable platform,”
in Field Programmable Logic and Applications, 2005. International Conference on,
pp. 658–661, 2005.

[81] I. Kuon and J. Rose, “Automated transistor sizing for FPGA architecture exploration,”
in Proceedings of the 45th annual conference on Design automation, pp. 792–795,
ACM New York, NY, USA, 2008.

[82] S. Singh, J. Rose, P. Chow, and D. Lewis, “The effect of logic block architecture on
FPGA performance,” IEEE Journal of Solid-State Circuits, vol. 27, no. 3, pp. 281–
287, 1992.

[83] J. Rose, R. Francis, D. Lewis, and P. Chow, “Architecture of field-programmable gate
arrays: the effect of logicblock functionality on area efficiency,” IEEE Journal of
Solid-State Circuits, vol. 25, no. 5, pp. 1217–1225, 1990.

[84] D. Densmore, A. Donlin, and A. Sangiovanni-Vincentelli, “FPGA architecture char-
acterization for system level performance analysis,” in Proceedings of the conference
on Design, automation and test in Europe: Proceedings, pp. 734–739, European De-
sign and Automation Association 3001 Leuven, Belgium, Belgium, 2006.

[85] P. Maidee and K. Bazargan, “Defect-tolerant FPGA architecture exploration,” in Pro-
ceedings of the 13th IEEE Conference on Field Programmable Logic and Applica-
tions (FPL), pp. 1–6, 2006.

[86] H. Parvez, Z. Marrakchi, U. Farooq, and H. Mehrez, “A New Coarse-Grained FPGA
Architecture Exploration Environment,” in Field-Programmable Technology, 2008.
FPT 2008. International Conference on, pp. 285–288, 2008.

137

http://www.winspice.co.uk

[87] A. Chattopadhyay, W. Ahmed, K. Karuri, D. Kammler, R. Leupers, G. Ascheid, and
H. Meyr, “Design space exploration of partially re-configurable embedded proces-
sors,” in Proceedings of the conference on Design, automation and test in Europe,
pp. 319–324, EDA Consortium San Jose, CA, USA, 2007.

[88] H. Zhang, M. Wan, V. George, and J. Rabaey, “Interconnect architecture exploration
for low-energy reconfigurable single-chip DSPs,” in Proceedings IEEE Computer So-
ciety Workshop On VLSI’99, pp. 2–8, 1999.

[89] V. Nookala, Y. Chen, D. Lilja, and S. Sapatnekar, “Microarchitecture-aware floor-
planning using a statistical design of experiments approach,” in Proceedings of the
42nd annual conference on Design automation, pp. 579–584, ACM New York, NY,
USA, 2005.

[90] Y. Wu, D. Chang, M. Marek-Sadowska, and S. Tsukiyama, “Not necessarily more
switches more routability,” Proc. ASP-DAC, pp. 579–584, 1997.

[91] R. Fisher, “Design of experiments,” British Medical Journal, vol. 1, no. 3923, p. 554,
1936.

[92] V. Czitrom and P. Spagon, Statistical case studies for industrial process improvement.
Society for Industrial Mathematics, 1997.

[93] M. McKay, R. Beckman, and W. Conover, “A comparison of three methods for se-
lecting values of input variables in the analysis of output from a computer code,”
Technometrics, pp. 55–61, 2000.

[94] D. Raj, Sampling theory. McGraw-Hill, New York, 1968.

[95] E. Harrington, “The desirability function,” Industrial Quality Control, vol. 21, no. 10,
pp. 494–498, 1965.

[96] G. Derringer and R. Suich, “Simultaneous optimization of several response variables,”
Journal of Quality Technology, vol. 12, no. 4, pp. 214–219, 1980.

[97] V. Torczon, “On the convergence of pattern search algorithms,” SIAM J. Optim.,
vol. 7, no. 1, pp. 1–25, 1997.

[98] V. Torczon and M. Trosset, “From evolutionary operation to parallel direct search:
Pattern search algorithms for numerical optimization,” Computing Science and Statis-
tics, pp. 396–401, 1998.

138

	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	FPGA vs FPAA Physical Design
	Floating-gate Based FPAA
	Existing Work on FPAA Research
	Contribution

	Chapter 2 — FPAA Placement and Routing
	The scope of the tasks
	Input Circuit Interface
	Graph-based Internal Representation of Circuits

	Target Architectures
	RASP2.5 and RASP2.7
	RASP2.8

	RASP Placer and Router (RASPER)
	Clustering, Placement and Routing in Early Development Phases of RASPER
	Simultaneous Placement and Routing in RASPER
	RASPER Placement and Routing Results

	Generic Reconfigurable Array Specification and Programming Environment (GRASPER)
	Placement in GRASPER
	Routing in GRASPER
	GRASPER Placement and Routing Results
	SWE Routing in GRASPER
	GRASPER Placement and Routing Results for Vector Matrix Multiplier (VMM) Circuits

	Impact of the Placement and Routing Tool on FPAA Research

	Chapter 3 — Signal Integrity and Performance Optimization
	Parasitic Extraction in RASPER
	Measurements vs Simulations Using a Band-pass Filter
	Parasitic Extractions of Sample Circuits in RASPER and Their Simulation Results

	Performance Optimization Using Simulated Annealing
	Test Suite Setup
	Optimization Results

	Parasitic Extraction in GRASPER
	Model Order Reduction Using the Time Constant Equilibration Reduction Method
	GRASPER Parasitic Extraction Results

	TargetC Algorithm for Improved Performance of Routed Circuits

	Chapter 4 — FPAA Architecture Exploration
	Previous Studies on FPGA Architecture Exploration
	FPAA Architecture Exploration
	Design of Experiments
	Fitting Polynomial Regression Models to Experimental Data
	Systematic Exploration of the Floating-gate-based FPAA
	Selecting optimum orders for multi-variable polynomial models
	Optimization Using Polynomial Regression Models
	Results and Conclusions

	Chapter 5 — Conclusion and Future Directions
	Directions for Future Research

	Appendix A — GRASPER User Manual
	Running GRASPER
	Input files
	GRASPER commands
	Options
	Output files
	Generating SPICE netlists from switch file

	Appendix B — GRASPER Architecture Description Format
	element types
	elements
	other commands

	Appendix C — SPICE netlists for some of the gmC filters used as test circuits
	References

