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SUMMARY

Field–programmable analog arrays (FPAAs) provide a method for rapidly pro-

totyping analog systems. Currently available commercial and academic FPAAs are

typically based on operational amplifiers (or other similar analog primitives) with only

a few computational elements per chip. While their specific architectures vary, their

small sizes and often restrictive interconnect designs leave current FPAAs limited

in functionality, flexibility, and usefulness. Recent advances in the area of floating–

gate transistors have led to an analog technology that is very small, accurately pro-

grammable, and extremely low in power consumption. By leveraging the advantages

of floating–gate devices, a large–scale FPAA is designed that dramatically advances

the current state of the art in terms of size, functionality, and flexibility. A large–

scale FPAA is used as part of a mixed–signal prototyping platform to demonstrate

the viability and benefits of cooperative analog/digital signal processing. This work

serves as a roadmap for future FPAA research. While current FPAAs can be com-

pared with the small, relatively limited, digital, programmable logic devices (PLDs)

of the 1970s and 1980s, the floating–gate FPAAs introduced here are the first step

in enabling FPAAs to support large–scale, full–system prototyping of analog designs

similar to modern FPGAs.

ix



CHAPTER 1

RAPID PROTOTYPING OF ANALOG SYSTEMS

The process of designing, fabricating, and testing an analog chip requires certain

expertise and is often long and expensive. As shown in Fig. 1, the process is not

unlike designing digital ASICs (application–specific integrated circuits), except that

there are fewer tools and libraries available to the designer. The traditional analog

design cycle often requires several iterations of the fabrication process, which with

the simulation, VLSI layout, and testing phases can easily consume a year or more for

typical IC designs. However, the use of a reconfigurable analog chip, dubbed a field–

programmable analog array (FPAA), would dramatically reduce the design cycle by

removing the fabrication stage from the iterative process. Thus, many designs may

be tested and modified within a single day.

Like field–programmable gate arrays (FPGAs), FPAAs are not optimal for all

solutions. They are, however, very useful for many situations, and a solution can be

found for many problems not requiring full functionality. Relative to custom–designed

analog circuits, a design implemented on an FPAA results in higher parasitics as well

as increased die area for a given design; therefore, the design always possesses some

inefficiencies (i.e., lower bandwidth and higher consumed power). On the other hand,

since analog circuit design is often time–consuming, these adverse characteristics are

well balanced by markedly decreased time to market.

FPAAs have been of interest for some time, but historically, these devices have had

very few programmable elements and limited interconnect capabilities, making them

limited in their usefulness and versatility. The next–generation FPAA needs to correct

these problems in order to extend the usefulness and acceptance of FPAAs. As shown

in Fig. 2, traditional FPAAs resemble the early PLDs in that they are focused on small

systems such as low–order filtering, amplification, and signal conditioning. However,

1



Concept Simulation Testing VLSI Layout Fabrication

Concept Simulation VLSI Layout Fabrication Testing

x 20

(3 months)

x 3

FPAA−based Rapid Prototyping Design Cycle:

Traditional Analog Design Cycle:

Figure 1. This figure illustrates the advantages of designing analog ICs using an FPAA–based rapid
prototyping technology as opposed to the traditional design cycle of VLSI layout and fabrication.
The traditional analog design cycle often requires 3 or more iterations of the fabrication process
which extends the development process to over a year. With an FPAA–based system, designs can
be synthesized, tested, and modified 20 or more times within a matter of days instead of years.

the class of large–scale FPAAs that we are exploring here are more analogous to

modern FPGAs. These FPAAs are much larger devices with the functionality needed

to implement high–level system blocks such as programmable high–order filtering,

Fourier processing, and signal analysis in addition to having a large number of fine–

and medium–grain, programmable analog blocks (e.g., operational transconductance

amplifiers (OTAs), transistor elements, capacitors, etc.).

1.1 Low–Power Signal Processing

The future of FPAAs lies in their ability to speed the implementation of advanced,

low–power signal processing systems. In this thesis, an FPAA architecture is pre-

sented for achieving flexible, large–scale FPAAs targeted at mainstream signal pro-

cessing systems. These FPAAs are intended to impact analog signal processing in

two ways: first, they perform the function of all rapid prototyping devices in reduc-

ing development time. Second, they are a platform for implementing advanced signal

processing functions—usually realized only in digital systems—with analog circuits.

2
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Figure 2. (a) Digital PLDs can be used to implement small, carefully defined pieces of a complex
system, while FPGAs can be used to implement entire systems including processor datapaths, com-
plex DSP functions, and more. Modern FPGAs can be 100 - 10,000 times larger and more complex
than the PLDs of the 1970s and 1980s. (b) Analagously, traditional FPAAs resemble the early
PLDs in that they are focused on small systems such as low–order filtering, amplification, and signal
conditioning. However, the FPAAs based on floating–gate devices presented here are much larger
devices with the functionality needed to implement high–level system blocks such as programmable
high–order filtering and Fourier processing in addition to having a large number of programmable
op–amp and transistor elements.

The primary benefit of implementing analog signal processing systems is the po-

tential for large savings in power consumption. For digital signal processing (DSP)

microprocessors, Gene’s law postulates that the power consumption, as measured in

milliwatts per million multiply–accumulate (mW/MMAC) operations, is halved about

every 18 months, as shown in Fig. 3 [28]. These advances largely follow Moore’s law,

and they are achieved by using decreased feature size, intelligent clock gating, and

other refinements. Unfortunately, a problem looms on the horizon; the power con-

sumption of the analog–to–digital (A/D) converter does not follow Gene’s law and will

soon dominate the total power budget of digital systems. While A/D–converter reso-

lution has been increasing at roughly 1.5 bits every five years, the power performance

has remained the same, and soon, physical limits will further slow progress.

For analog systems to be desirable to the largely DSP–oriented commmunity,

they not only need to have a significant advantage in terms of size and power, but

3
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Figure 3. Data from [28] showing the power consumption trends in DSP microprocessors along
with data taken from a recent analog, floating–gate integrated chips developed by the CADSP
team [13, 22, 47, 51, 77].

they must also be relatively easy to use and easily integrated into a larger digi-

tal system. In addition, they must be shown to be accurately programmable and

effective at implementing many of the key systems found within DSP. As shown

in Table 1, the functionality desired for any technology focused on signal process-

ing includes monolithic filters, linear and nonlinear scalar functions, vector–matrix

operations (i.e., transforms, distance metrics, winner-take-all, principle component

analysis, etc.), linear–phase filters, adaptation, and tap delay lines for FIR systems.

1.2 Cooperative Analog/Digital Signal Processing

This thesis is part of a larger effort within the Cooperative Analog/Digital Signal

Processing (CADSP) group at the Georgia Institute of Technology. The goal of the

CADSP group is to investigate the partitioning of signal processing systems between

4



Trad. Large–scale
Functionality DSP µP Analog FPAA

Programmable • – •

Monolithic Filters ◦ • •

Linear Scalar Operations • ◦ •

Nonlinear Scalar Operations ◦ • •

Vector–Matrix Operations ◦ ◦ •

Linear–phase Filters • – ◦

Adaptivity ◦ – ◦

Tap Delay Lines • ◦ ◦

Key:
– = No or very limited support
◦ = Possible
• = Efficient, well–suited to technology

Table 1. Summary of Signal Processing Functionality

the analog and digital domains. Most current signal processing systems that gen-

erate digital output place the ADC as close to the analog input signal as possible

to take advantage of the computational flexibility available in digital processors (see

Fig. 4). However, the development of large–scale FPAAs—and the CAD tools needed

for their ease of use—would allow engineers the option of performing some of the

computations in reconfigurable analog hardware prior to the analog–to–digital (A/D)

converter, resulting in both a simpler A/D converter and a substantially reduced

computational load on the digital processors that follow. By leveraging the power

efficiencies mentioned in the previous section, some analog signal processing systems

have been shown to achieve as much as five orders of magnitude over typical DSP mi-

croprocessor implementations [5, 22, 77]. As illustrated in Fig. 3, this corresponds to

a 20 year leap forward on the power curve predicted by Gene’s law [37]. Additionally,

the output of such an analog system can be higher–level information, such as Fourier

coefficients or phonemes of speech. This information can potentially be converted

into the digital domain with a much lower resolution and/or conversion speed than

would be needed in the traditional system where a literal sampling of the incoming

5
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(ADC) is placed as close to the real–world, analog inputs as possible. However, significant power
savings can be achieved by moving some of the signal processing functionality into the analog domain
(in front of the ADC). Conceptually, this analog signal processing can be combined with the ADC
to form a “specialized ADC” as shown here.

signal is needed [45]. Thus, a simpler and much smaller A/D converter can be used.

As an example of the advantages of moving the A/D boundary, one can consider a

software radio system. In the traditional implementation, the analog signals coming

from multiple (e.g., four to eight) antennas must each be converted to the digital

domain. The signals coming from the antennas are still modulated by the carrier

frequency, and thus, multiple high–speed A/D converters must be used. In a CADSP

system, however, the demodulation and beam–forming functions can be implemented

in floating–gate analog circuitry [41, 45, 51, 63]. The output from the analog domain

is then a single, baseband signal that can be converted using a much slower A/D

converter.

To realize the power savings of analog systems in advanced signal processing

systems, the CADSP group focuses on the use of floating–gate devices as the en-

abling technology. Recent advances in floating–gate circuit technology have yielded

promising results in the implementation of complex analog signal processing systems.

Floating–gate circuits have already been demonstrated in the areas of noise suppres-

sion, speech processing, image processing, and adaptive systems [6, 20, 23, 39, 47, 77,
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81]. Work has also progressed on creating fast, accurate methods of programming

large arrays of floating–gate transistors [76]. This is an important factor in determin-

ing the viability of using floating–gate devices in large, complex systems, particularly

in mass–production environments.

The CADSP group brings together researchers from three areas of electrical en-

gineering: analog circuit design, digital signal processing, and computer/systems en-

gineering. Within the group, the analog circuit designers focus on the development,

characterization, and testing of low–level floating–gate circuits as the core technology

of CADSP systems. The digital signal processing researchers focus on the algorith-

mic translation of digital signal processing systems into the analog domain. They are

particularly interested in capitalizing on the large–scale system parallelization that

is possible within the analog domain, as well as the real–time, continuous–flow na-

ture of analog systems and its affect on traditional algorithms. Finally, the computer

engineering researchers focus their attention on the system–level development of the

hardware systems and computer–aided design (CAD) tool flows necessary to realize

practical CADSP systems.

This thesis falls within the computer engineering sub-area of the CADSP group.

As a practical matter, the investigation of a reconfigurable system for rapidly pro-

totyping analog and digital systems is extremely important in moving the CADSP

effort forward. To date, there are no large–scale FPAAs available that will allow

designers to test complex analog and mixed–signal systems. Furthermore, given the

programmable nature of floating–gate devices, the development of FPAAs based on

this core technology is a natural and important step toward the realization of a widely

accessible method of creating analog and mixed–signal designs. FPAAs will provide

a platform for exploring cooperative analog/digital signal processing systems that

optimally balance the low–power, real–time computational nature of analog circuits

with the flexibility and robustness of digital systems.
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CHAPTER 2

HISTORY AND MOTIVATION

Reconfigurable hardware has long been of interest to circuit designers and engineers.

In the digital domain, programmable logic devices (PLDs) have made a large impact

on the development of custom digital chips by enabling a designer to try custom

designs on easily reconfigurable hardware. Since their conception in the late 1960s

and early 1970s, PLDs have evolved into high–density field–programmable gate arrays

(FPGAs) [9, 14, 80]. Modern FPGAs are widely used in the laboratory for rapidly

prototyping digital hardware, as well as in production goods to decrease time-to-

market and to allow products to be easily upgraded after being deployed.

In the analog domain, however, progress has been much slower. While early ana-

log integrated circuits (ICs) were often tunable with adjustable biases, truly recon-

figurable analog circuitry in the form of field–programmable analog arrays (FPAAs)

did not emerge until the late 1980s [35, 75], and commercial offerings did not reach

the market until 1996 [61].

2.1 Background on FPAAs

FPAAs can be broadly classified into two categories: continuous–time devices and

discrete–time devices [33]. There are academic and commercial examples of both

categories, as well as advantages unique to each design methodology. This section will

focus more on continuous–time FPAAs, because the large–scale FPAA architecture

developed herein is a continuous–time FPAA; however, previous work on discrete–

time FPAAs will be summarized for comparison sake. Previous FPAAs have varied

greatly in terms of computational granularity and capability, interconnect structure,

performance, and application focus.

Fundamentally, FPAAs include two functions: routing and computation. (The
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Figure 5. Most discrete–time FPAAs use switched–capacitor designs. As the switch momentarily
rests on the Vin terminal, the input voltage charges the capacitor. Then the switch moves to the Vout

terminal where it is discharged through the next phase of circuitry. The programmability within
switched–capacitor designs is usually achieved using an array of appropriately sized capacitors.
Thus, the effective capacitance at each switch can be varied by setting the n digital memory cells
controlling switches S1 to Sn. In essense, this capacitor bank is equivalent to having a Digital–to–
Analog Converter (DAC) being included in each computational block.

next section will show that some designs combine these two functions into a single

unit; however, both elements are still present whether explicitly or implicitly.) The

routing elements are typically networks of switches connected together by signal lines

with the network architecture and switch types varying dramatically across different

FPAAs. The switch networks then connect to the computational elements of the

system. If there is more than one type of computational element, the computational

elements are usually grouped together to form a computational analog block (CAB)

that is analagous to the computational logic blocks found on FPGAs. If there is only

one type of computational element, the element and the CAB are one and the same;

however, for convenience, the computational elements will still be referred to as CABs

here.

2.2 Discrete–time FPAAs

Discrete–time FPAAs are typically switched–capacitor designs. For these circuits, the

incoming voltage is sampled by opening and closing a switch that connects the input to

an initial capacitor (Fig. 5). The switch and capacitor form a type of analog register,

and the system’s signal path is partitioned by these registers. The basic computational
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Typical

Computational

Elements Advantages Disadvantages

Fine Transistors Small
Simple CAB design
Generic building blocks

Large # of switches
Large parasitics

Medium Op-amp
OTA
Current conveyor

Semi-generic building blocks
Moderate CAB design
Large variety of CAB /
interconnect designs

Limited size
Severe functionality /
performance trade–off

Coarse Fourier Processor
“Expert cell”

Higher performance
Easier user interface

Limited flexibility
Limited functionality

Table 2. Summary of FPAA Granularity: The granularity of the computational logic used in an
FPAA impacts the size, performance, flexibility, and functionality of the device.

elements are usually operational amplifiers and analog registers, which synthesize a

linear resistor whose value is determined by the switching rate and capacitor value.

The synthesis of linear variable resistors gives switched–capacitor FPAAs greater

flexibility than traditional continuous–time FPAAs; however, they can also be harder

to design proficiently, because the switches and capacitors can introduce noise and

nonlinearities into the system that must be overcome [61]. In addition, these designs

have a limited bandwidth based on the sampling rate, are complicated by the need

for continuous–time anti–aliasing and reconstruction filters at the input and output,

and can be large if programmable capacitor arrays are included [35, 61].

In the late 1990s, several switched–capacitor FPAAs were introduced by both aca-

demic and commercial entities. In the academic arena, basic computational elements

vary from the simple operational amplifier [21, 50] to the more complex blocks, such

as a lossless integrator and lossy integrator connected in a loop [53]. These devices

also can have programmable capacitor and/or programmable resistor arrays, which

add programmability [21, 35]. In the commercial arena, Motorola was one of the

first companies to bring a general–purpose FPAA to market with their MPAA020

and MPA1000 series [4, 10, 61]. Since then, a spin–off company named Anadigm has
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marketed these switched–capacitor FPAAs [2]. The newest Anadigm devices have

CABs with two differential operational amplifiers, programmable capacitor banks, a

successive approximation register (for implementing an A/D converter), and a high–

speed comparator [3]. However, even the latest devices are relatively limited with

only four CABs per chip and are targeted at basic signal conditioning and filtering

applications.

Switched–capacitor designs are not the only discrete–time FPAAs. Switched–

current circuits can also be used to build an FPAA. The advantages of this technique

include not requiring operational amplifiers, capability of fabrication on standard

digital CMOS processes, and elimination of distortion on the signals due to para-

sitic resistances. To their detriment, these designs can produce less accuracy than

switched–capacitor circuits, and since the signals are all currents, a given output stage

can drive only one input stage [12].

2.3 Continuous–time FPAAs

Continuous–time FPAAs typically use an array of fixed components (often opera-

tional amplifiers and/or transistors) that are interconnected by a switching matrix.

The switches are usually controlled by digital registers, which can be loaded by an ex-

ternal controller, thus allowing the FPAA to be configured to implement a number of

different designs. This type of FPAA is advantageous because potential sampling arti-

facts are avoided; anti–aliasing filters are not needed; common, relatively easy design

processes can be used (e.g., standard CMOS processes); and large signal bandwidths

can be supported with predictable performance [61]. However, the switching net-

works introduce parasitic impedances into the signal path that limit the bandwidth

and add noise to the system. Some of the literature has focused on minimizing the

number of switches in the signal path, but this can severely limit the flexibility of the

FPAA [24, 55, 58, 67].
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2.3.1 Computational Granularity and Capability

The granularity of the computational logic that forms the basis of the FPAA’s de-

sign is an important design characteristic. As summarized in Table 2, the finest–

grain architectures typically use transistors as the core computational cell. While

these designs offer the most flexibility and generality, synthesizing a sufficiently com-

plex system requires a large number of transistors to be wired together. Thus, a

large number of switches are introduced into the signal path. The switch parasitics

and finite resistance increases the noise within the system and limits the perfor-

mance/bandwidth [24, 49, 67]. Fine–grain FPAAs have been primarily relegated to

research in evolvable hardware [48, 72, 78], where the lowest–level building blocks are

desirable for generating unique designs using non-traditional design methodologies.

Systems that are designed using genetic algorithms are not as negatively affected by

the parasitics and non-ideal resistances of switches, since these parameters are taken

into account and even exploited throughout the evolutionary design process.

On the coarse–grain extreme, one finds FPAAs such as IMP’s EPAC devices,

which contain an “expert cell” as the core computational block [49]. In the IMP50E10

device, this cell is a very high–level block with limited interconnects that is aimed

directly at signal conditioning applications. The logic within the cell can be config-

ured to function as an amplifier with an optional low–pass filter or as a comparator

with optional hysteresis. There is also a dedicated D/A converter for defining the

reference point for the comparator. These coarse–grain designs sacrifice flexibility

and generality in favor of increased, more predictable performance [49].

The majority of FPAAs fall in–between these two extremes. A number of FPAAs

use an operational transconductance amplifier (OTA) as the basic computational

element [26, 64, 65, 67, 70, 71]. OTAs work well as the core computational cell,

because their transconductance can be programmed either by varying the analog bias

voltage or by changing the gain of the output current mirrors [1, 65]. In addition, it has
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been shown that OTAs can implement a wide range of linear and nonlinear circuits.

Several FPAA designs have focused on synthesizing linear circuits and use OTAs to

implement amplification, integration, and filtering functions [64, 65, 67]. Ray et al.

have proposed a more generalized scheme in which linear circuits are synthesized using

an OTA–based lossless integrator and an OTA–based lossy integrator as the basic

functional blocks. They also use an OTA–based multiplier and OTA–based integrator

as the basic functional block for synthesizing nonlinear circuits such as amplitude and

frequency modulation [70]. Sanchez–Sinencio et al. have used OTAs to implement

nonlinear functions such as multiplication, division, square root, exponentiation, and

piece–wise linear operations [71].

Similiarly, several FPAA designs have been proposed using a current–conveyor

structure as the basic building block. Current conveyors are similar to OTAs; how-

ever, when used as an amplifier they exhibit a constant bandwidth that is independent

of gain. They also do not require compensation circuitry to insure stability, and thus,

they can operate at higher frequencies [34]. Gaudet et al. have proposed a current–

conveyor based FPAA in which each CAB contains a second–generation current–

conveyor, two programmable capacitors, and two programmable resistors (transcon-

ductors) [34]. This CAB is shown to implement amplification and first–order filtering

functions, as well as log and anti–log functions with the addition of switchable diodes.

Premont et al. also describe an FPAA based on current–conveyors [68]. The core cell

includes tuneable resistors and a current–conveyor. It has been demonstrated that

this cell can be configured to implement a tuneable capacitor, and thus is suitable for

amplification and filtering functions.

Other medium–grain computational blocks have been used in FPAAs as well.

Pierzchala et al. used an OTA–based amplifier/integrator cell that does not require

switches in the signal path [67]. Quan et al. proposed a current–mode FPAA that

uses a cascode current–mode integrator as the basic building block [69]. This core cell

13



CAB

CAB

CAB

CAB CAB

CAB CAB

CAB

(a) (b)

CAB

CAB

CAB

CAB

CAB

CAB CAB

CAB

CAB

CAB CAB

CAB

Sw

Sw

Sw
Sw Sw

Sw Sw
(c) (d)

Figure 6. A number of different interconnect schemes have been used in FPAAs including (a) local
connections, (b) global connections, (c) cross–bar networks, and (d) fat–tree interconnects.

can implement amplification, integration, and attenuation with a minimum number

of switches in the signal path [24]. In a more specialized chip design for prototyping

machine learning algorithms, Bridges et al. used a mix of components including tran-

sistors, a differential pair, a current mirror, a bias current source, and configurable

capacitors [11]. They used these blocks to synthesize single learning primitives such

as correlational learning, regression learning, and clustering.
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2.3.2 Interconnect Structure

Aside from CAB components, a number of different interconnect structures have also

been proposed for FPAAs (see Fig. 6). The most common interconnect switch is a

MOS transistor controlled by a digital memory [4, 12, 34, 55, 65, 69]. Unfortunately,

switch resistance in these devices can range from 1000 to 5000 Ω making them a

limiting factor in designing large, complex FPAAs [21]. Lee and Gulak used this type

of pass–transistor switch in [55, 58]; however, the parasitic effects of these switches

greatly limited the performance and capability of their FPAA [59]. As a result, they

replaced the pass transistors with four–transistor transconductors, which increased

the performance and functionality of their FPAA [56]. The new design reduced the

parasitic effects, increased the linearity, and increased the noise immunity. In addi-

tion, a transconductor switch exhibits a linear resistance, thus each switch can also

be used as a variable resistor by driving the gate voltage with a multi-valued memory

(or another internal or external signal). However, the large transistors needed for

low–frequency operation and the addition of a multi-valued memory for each switch

greatly increases the area required for the interconnects [59].

Other switch designs have been proposed as well. Premont et al. used a current

conveyor as the switching element [68]. This was particularly novel, because they used

the current conveyor for both the switching element and the active computational

element. In an effort to provide a radiation–tolerant FPAA for space applications,

Edwards et al. proposed the use of metal–to–metal antifuses for the switches [21].

The antifuse design they used also has the benefit of a relatively low resistance (in

the 15 to 25 Ω range).

In addition to using different switches, interconnect schemes have also varied in

overall architecture. In the Premont et al. FPAA previously mentioned [68], the use

of a current conveyor for both the switching element and active computational ele-

ment results in CABs and switching interconnects that are indistinguishable from one
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another. The overall architecture becomes a homogeneous mesh of logic with a min-

imum number of switches introduced into the signal path. Various other approaches

have also been tried in an effort to minimize the number of switches. Quan et al.

proposed the use of local interconnects. In their architecture, each CAB can be con-

nected to its eight neighbors and itself [24]. This would seem to be a severe limitation

on the flexibility of this FPAA; however, they focus on the large number of ana-

log circuits with mostly local interconnections [69]. A similar idea was proposed by

Becker et al. [7]. They used digitally tunable transconductors as the computational

element. In this design, CABs were arranged in a hexagonal pattern; each CAB con-

sists of seven programmable transconductors—six for connecting to each neighboring

CAB and one for local feedback. This FPAA is designed for implementing Gm–C

filters (with the required capacitance being provided by the parasitic impedance of

the transconductors). Again, the lack of dedicated routing hardware is a limiting fac-

tor in this design, but if the target applications are constrained to be Gm–C filters,

it is satisfactory. Pierzchala et al. tried an even more limiting architecture in which

no electronic switches were included in the signal paths [67]. While these designs

may provide benefits in bandwidth and signal–to–noise ratio (SNR), they lack the

flexibility and generality needed in a truly general–purpose FPAA.

In another design, Pierzchala et al. introduced an interconnect scheme with both

local and global signal paths [66]. This configuration provided local routing paths for

a cell’s four neighbors (north, south, east and west), as well as connections to global

busses that run horizontally, vertically, and diagonally. This two–tiered hierarchy in-

creases the routing flexibility within the FPAA. An even more flexible interconnection

network is the crossbar switch [70]. The crossbar switch offers a nonblocking, fully

connectable architecture; however, for a large number of inputs and outputs its size

can be too big (O(N 2) growth rate) [55]. Lee and Gulak tried to solve this problem

by using an area–universal fat–tree network [58]. They used a heirarchical fat–tree
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network of small crossbar switches where the CABs were connected as the leaves of

the tree. In an additional effort to minimize the size required by the switch networks,

the number of connections was constrained [55]. Unfortunately, their prototype was

too small to fully test this interconnect concept.

2.4 Complimentary Research

There are several areas of research progressing in fields complimentary to FPAAs. On

the hardware side, there are different attempts at combining programmable digital

and analog hardware. Chow et al. have proposed a single–chip field–programmable

mixed–analog–digital array (FPMA) for prototyping mixed–signal systems [15]. This

effort combines an array of standard digital FPGA cells with a programmable array

of operational amplifiers, capacitors, resistors, and diodes [16]. The reconfigurable

analog hardware is limited in nature and is not the primary emphasis in this case.

Instead, the focus of this work is on configurable A/D and D/A converters that reside

between the blocks. Lee has also done some work in this area; however, his focus is

also on the design of reconfigurable A/D and D/A converters and not the design of

complex analog arrays [57].

Faura took a slightly different approach to the FPMA concept by combining digital

FPGA logic, programmable analog logic, and a digital microcontroller on the same

integrated circuit (IC) [27]. Once again, the reconfigurable analog hardware was not

very complex. In this case, the analog circuitry was used to perform limited signal

conditioning on the incoming signals, and as such, it was designed using a very large–

grained architecture that limited the degree of programmability.

Dudek and Hicks took yet another approach to reprogrammable hardware with

their analog microprocessor [17]. Their system was modeled after a standard digital

microcontroller with digital memory and digital fetch and decode control logic; how-

ever, the actual datapath was analog. They used a sampled–data approach similar
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to switched–capacitor systems to temporarily store values in analog registers between

instructions [18]. While this research may not be directly relevant to FPAAs now,

it does hold promise for the development of future FPAAs that contain advanced

intellectual property (IP) modules, such as analog microprocessors similar to modern

digital FPGAs.

On the software side, several different efforts are focused on various aspects of

the CAD tool flow necessary for the rapid prototyping of analog and mixed–signal

systems. Within the simulation and synthesis processes, it is important to have an

accurate and efficient method of modeling the behavior of the generated system.

Various models have been suggested including those by Enright and Mack in [25] and

Long in [60]. Additionally, work has been done in the synthesis of analog circuits from

user input in the form of an analog high–level description language (AHDL). Several

AHDLs exist including Cadence’s SpectreHDL. In one effort, Binns et al. introduced

a high–level, top–down methodology for designing analog systems that are described

in SpectreHDL [8]. However, with the creation of an IEEE standard AHDL that

has been dubbed VHDL–AMS (VHSIC hardware description language – analog and

mixed–signal), proprietary AHDLs will probably fade in popularity. Thus, the efforts

of Ganesan and Vemuri in building a VHDL–AMS synthesis tool [30, 31] seem more

relevant to the tool flow of future FPAAs.

Ganesan and Vemuri are developing an automated CAD tool flow for analog cir-

cuits that they call the VHDL–AMS Synthesis Environment (VASE) [30]. VASE is

built on their previous work on a performance–oriented router for FPAAs [29]. The

router was designed for and tested using Motorola’s MPAA020 FPAAs (now sold by

Anadigm [2]). As was previously noted, these devices were based on a small num-

ber of operational amplifiers and switched–capacitor technology. The design of a

large–scale, functionally rich FPAA will provide researchers in the CAD tool flow

arena with a more complex and more interesting platform to test and develop their
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automated software applications. In a similar effort, Ganesan and Vemuri have pub-

lished work focusing on the partitioning of systems between the analog and digital

domains [32, 33]. Again, a large–scale, mixed–signal prototyping platform will benefit

this area of research by providing a viable platform to investigate the advantages and

difficulties involved in the analog–digital partitioning of systems.

2.5 Performance

The performance characteristics of FPAAs in regards to bandwidth, noise immunity,

and signal–to–noise ratio (SNR) are important in order for FPAAs to be widely

accepted by circuit designers. As with many new technologies, the initial effort on

FPAAs has focused more on their functional development and proof–of–concept rather

than the rigid performance parameters needed for marketable products. Thus, the

single biggest unknown in designing large–scale FPAAs is the resulting performance.

Often, the initial reaction to FPAAs is that the noise introduced by device mismatch

and the parasitic effects of large numbers of switches will cripple the performance of

any large, highly flexible FPAA.

Floating–gate devices alleviate some of these problems. Specifically, device mis-

match can be compensated for by individually programming the floating–gate tran-

sistors to match in output behavior. In addition, the programmable nature of the

switches will allow them to be used as variable resistors within the system, and thus,

use the non-ideal nature of the switch as an active circuit element [36]. However,

this does not completely solve the problem of switch parasitics, because certainly, a

number of “unwanted” switches will ultimately be required in a given circuit. The

effect of these floating–gate switches has been studied here and results are shown in

Chapters 4 and 5. The user and/or automated compilers can use this information to

optimize a given system in terms of switch routing so as to minimize their effect and

meet the required performance constraints.
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Previous FPAAs have also been limited in bandwidth based on their underlying

technology. One of the first commerical FPAAs, the EPAC device, was limited to

125 kHz at the input [49]. In general, switched–capacitor designs are typically found

to have maximum frequencies in the kilohertz to low–megahertz range [35]. This is

similar performance to that shown by continuous–time FPAAs with local routing [24,

69]. One of the fastest designs on record is a small FPAA with a simple CAB based on

the second–generation current–conveyor. An amplifier implemented on this FPAA is

shown to have a 3-dB frequency of 11 MHz, which is on the order of the performance

needed for video applications [34]. While scaling up this FPAA to a meaningful size

would inevitably diminish it’s bandwidth, it does offer hope that future FPAAs will

be able to balance flexibility, functionality, and performance.

2.6 Application Focus

A general–purpose, commercially viable FPAA similar to commercial FPGAs remains

elusive. Many FPAA designs have sacrificed size and generality in favor of better

performance for a constrained set of circuit designs. FPAAs have been proposed for

evolvable hardware [48, 72, 78], neural networks [55, 58], signal conditioning [49],

programmable filters [7, 24, 69], fuzzy logic [66], machine learning algorithms [11],

and high–frequency applications [34]. Other FPAA designs have attempted to focus

on a broader class of systems including both linear and nonlinear elements [10, 70].

However, these efforts have failed to produce a suitably generic, user–friendly FPAA.

In addition, all of the FPAAs to date have been very small. The number of CABs on

a given device remains under 50 with many of the devices having less than 10 CABs.

While several companies currently sell FPAA devices, the market remains relatively

immature, and no single device or technology has received wide–spread acceptance.
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CHAPTER 3

BUILDING A LARGE–SCALE FPAA

As shown in Chapter 2, traditional FPAAs resemble the early PLDs in that they are

focused on small systems often having only a handful of computational logic blocks

and limited programmability. Likewise, an analogy can be made between modern

FPGAs and the large–scale FPAAs introduced in this thesis. However, while their

overall architectures may be similar, reconfigurable analog systems are not completely

analogous to their digital counterparts. Developing robust, programmable analog cir-

cuits presents a number of challenges not found in the digital world. In particular, the

noise sensitivity (and effects of the switch network on the results of the computation)

and the design space to which programmable devices are applicable are more critical

factors in designing FPAAs.

3.1 Noise Sensitivity and the Effects of Switches

Analog circuits tend to be more sensitive to noise than digital designs. Because of

the quantization and resulting representation of ones and zeros as discrete voltages,

digital designs can tolerate a relatively large amount of noise in the system without

changing the precision of the result. Problems arise only when noise levels are high

enough to move a signal from a logical one to a logical zero or vice versa. In the analog

domain, however, values are represented as continuous voltages or currents. Any noise

in the system will directly affect the precision of the result. For reconfigurable analog

systems that must rely on networks of switches to set the internal signal paths, this

means that the parasitics of the switches in a signal’s path can affect the result and

are a critical factor in the performance of the FPAA.

Adding switches in the signal path can have several effects including the addition
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Figure 7. (a) A simple, two–transistor current mirror illustrates the challenges of design reconfig-
urable ICs with fine–grain building blocks. (b) The parasitic capacitance that results from using
switches to form the current mirror will reduce the bandwidth of the system.

of parasitic capacitance, resistance, and transistor leakage currents to the path. In-

creased capacitance and resistance on a signal line will lower the bandwidth of the

system. For example, a simple two–transistor current mirror is shown in Fig. 7a. The

same circuit is shown in Fig. 7b with switches being added to the signal paths as

they would need to be if the current mirror were synthesized on the FPAA using the

MOSFET transistors in the CAB. In this case, there should not be any current flow

between the gate nodes, so the voltage should remain equal on the two gate nodes

even with the switches in the signal path. However, the parasitic capacitance will

decrease the bandwidth of the current mirror.

As shown in Fig. 8, other circuits that have switches in a signal path with current

flowing through them will have a voltage drop across the transistor. In the case of a

digital inverter (also considered a high–gain amplifier), adding switches to the sources

and drains of the nFET and pFET transistors will result in an output with maximum

and minimum voltages that are slightly inside the power rails (see Fig. 9). Since the

switches in the FPAAs designed as a part of this thesis are pFET devices, one can

expect this effect to be much worse for low voltages (i.e., ground) than voltages near

the 3.3 V power rail. In this case, the parasitics also increase the rise and fall times,

and thus, descrease the maximum frequency for the system.

22



In Out OutIn

(a) (b)

Figure 8. (a) A MOSFET inverter (or high–gain amplifier) circuit diagram is shown here without
the switches as it would be designed in a custom CMOS chip. (b) Synthesizing the inverter on
an FPAA using switches to connect transistors from the computational logic blocks results in this
circuit diagram. The switches will add parasitic capacitance as well as create a voltage drop across
the transistor for those switches that have current flowing through them.
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Figure 9. Here, the input to output voltage relationship is shown for an inverter that is synthesized
in a testbed FPAA. The inverter is synthesized using an nFET and pFET in one of the CABs on
the chip. The switches used to make the appropriate connections are shown in Fig. 8b. The effects
of the switches in the signal path are evident by the uncharacteristic linear decay as the output
approaches ground. Also, it is clear that when the input is High, the output is not equal to 0 V
as one would expect. The switches in the signal path connecting ground to the inverter cause the
output to settle to a voltage greater than 0 V due to the non–zero resistance of the switches.

3.2 Switch Networks and Interconnect Design

The resistive/voltage drop effects of the switches will certainly increase as more

switches are added to the signal path. However, there is another subtlety involved.

The parasitic capacitance and resistance added by the switches at any given switch

terminal is actually the sum of all the parasitics of all the switches in a row or column.

The summation of parasitics is due to the fact that all the sources for a given row of

switches are tied together and that all the drains for a given column of switches are

tied together. Therefore, the parasitic contribution of the switches will be present

regardless of the state (on or off) of each switch. Since the primary effect of parasitics

is lowering the bandwidth, an important architectural issue is present, especially if
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OutIn

Figure 10. A full crossbar switch provides the most interconnectivity between the components and
the input/output (I/O) pins. This architecture also leads to the fewest number of switches in series
in a given signal path. However, it results in the worst parasitic effects because of the large number
of switches tied to each row and column.

the goal is high–speed design. As FPAAs scale up in size, designers will not be able

to use large crossbar switches to make global connections without seriously limiting

the bandwidth of large–scale FPAAs.

Instead, hierarchical interconnects will be necessary. By limiting the number

of switch connections at each tier of routing, the maximum bandwidth can be set.

However, as more tiers are added to the heirarchy, the number of switches that a signal

must travel through will increase, thus increasing the resistive drop in voltage due to

the routing network. Extreme examples of these two routing paradigms (crossbar vs.

hierarchical) are shown in Fig. 10 and Fig. 11. In Fig. 10, a full crossbar switch is

shown to illustrate the large parasitic contributions of the switches that result from

this type of routing design. The transistors that contribute parasitics to the path

from In to Out are highlighted. Figure 11 shows the other extreme, a binary tree. In
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In Out

Figure 11. A full binary tree provides the least parasitic effects; however, it requires the most
switches to be present in series in a given signal path, and has limited interconnectivity between the
components and I/O pins.

this case, the parasitics at each tier of the hierarchy are minimized, but the number of

switches through which a signal must pass increases rapidly with the size of the FPAA.

Connectivity is also more limited in a binary tree style architecture. Large–scale

FPAA designs must balance the need for bandwidth, signal degradation (number of

switches in the signal path), and interconnectivity. The optimal point for this trade–

off will be a function of the signal mode of the computational logic (current–mode,

voltage–mode, mixed–mode), the size of the overall FPAA, the process technology

used (and thus the level of parasitics present), and the bandwidth requirements of

the end–user.

A compromise between the extreme routing designs is necessary. One such so-

lution uses crossbar switch networks in the local CAB routing to provide the most

connectivity and flexibility in connecting the components together. Global routing

will then occur through a moderate number of tiers. For example, CABs can be clus-

tered into megaCABs (groups of four to eight CABs), where limited routing connects

CABs within each megaCAB together. These megaCABs can then be tiled across

the FPAA in a mesh–style architecture with horizontal and vertical routing between
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the megaCAB blocks. By tiering the global routing interconnects, the routing area

growth is slowed from O(N 2) to O(logN).

3.3 Design Space and Computational Analog Block Design

Another difference between reconfigurable analog and digital devices is the design

space that each must encompass. Functionality in the digital domain can be reduced

to a basic set of combinational and sequential primitives. For example, a NAND gate

can be configured to implement any of the other Boolean logic gates. Thus, with a

sufficiently large number of NAND gates, any combinational logic function can be

achieved. Similiarly, an asynchronous read–only memory (ROM) primitive can be

used to implement any combinational function. For the sequential functions, any

basic storage element (e.g., flip-flop or latch) can be used to provide the necesary

memory. Most modern FPGAs use asynchronous ROMs to synthesize the combi-

national logic and D–type flip–flops for implementing the memory/sequential logic.

Thus, by replicating these two basic primitives thousands of times across a chip (and

a sufficient routing network), an FPGA can be created that synthesizes a very large

number of different digital systems. It is tempting to think that one might be able to

do the same thing in the analog domain. However, there has not been a sufficiently

generic set of medium–grained building blocks (on the same order of complexity as

flip–flops or asynchronous ROMs) proposed for synthesizing a wide–range of analog

circuits. To get the desired generality, one must use fine–grain building blocks, such

as transistors, resistors, diodes, and capacitors. Indeed, a large number of analog

systems can be built with these basic blocks; even digital systems could be synthe-

sized with such a device. However, these primitives are so fine–grained that it would

require such a large number of components—and thus a large number of switches—to

implement a design that the switch parasitics would degrade the performance. For

example, the circuit diagram for a basic 9–transistor operational transconductance
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Figure 12. (a) The circuit diagram of a basic 9–transistor operational transconductance amplifier
(OTA). (b) The circuit diagram of the same OTA with the switches needed if it is implemented on
a fine–grain FPAA with only transistors. The addition of the 27 switches will dramatically reduce
the performance and functionality of this circuit.
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amplifier (OTA) is shown in Fig. 12a. In part (b) of this figure, the same OTA is

shown with the switches necessary to synthesize this circuit on a fine–grained FPAA

with transistors only. The FPAA design requires at least 27 switches, in addition to

the nine transistors, to implement the OTA. The switches will drastically affect the

performance and functionality of the OTA and may cause the circuit to break. To

mitigate these effects, coarser–grained blocks must be used. The task then is to do

so while still maintaining sufficient flexibility, functionality, and generality.

Using coarse–grain blocks can be appealing given their increase in performance

and robustness over fine–grain blocks. However, if the basic building blocks in an

FPAA are of too high a level, then the flexibility is greatly diminished. To be as

flexible as possible, an FPAA needs to have a wide range of fine–grained, medium–

grained, and coarse–grained components. This means that there will often be more

than one way of synthesizing the same system on the FPAA. This provides the most

flexibility to end–users, because they can vary the levels of performance, utilization,

flexibility, and complexity. For example, a CAB could contain a high–level cell for

bandpass filtering, several OTAs, and several pFET and nFET transistors. If there

are a sufficient number of CABs, then a bandpass filter could be implemented in at

least three ways:

1. Specialized bandpass filter block: The specialized cell in one of the CABs could be

used directly. This is the simplest implementation method, and it will provide

the highest performing design. However, since the full circuit is set in silicon,

this will provide the least flexibility in terms of specifying the filter parameters

and circuit topology.

2. OTA–level Design: The OTAs located in CABs could be connected via the

switch network to implement a number of different circuit topologies. This

design method will result in lower performance than the first method, but it

gives the end–user a lot more flexibility and input into the filter specifications.
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Here, the only fixed parameter is the type of OTA that is used in the CABs.

3. Transistor–level Design: The transistors located in the CABs could be used to

synthesize different operational amplifiers or other medium–sized blocks, which

could then be wired together as in method two to form a bandpass filter module.

Obviously, this would result in a large number of switches in the signal paths,

and thus, it would use alot of the routing infrastructure and would be plagued

with large parasitics. Because of the large number of switches used in this

design, it would result in the lowest performance (assuming basic functionality

can be achieved at all), but it would result in the highest degree of freedom in

specifying the circuit topology and filter parameters.

The perfect CAB is elusive indeed. However, careful analysis of common circuit

topologies can lead one to a group of components that strike a reasonable balance

between flexibility, performance, and generality. Also, one should not limit designs

to homogeneous meshes of CABs. In reality, the overall architecture presented in this

thesis is designed to be a framework that can be used with many different CABs,

while not requiring changes to the overall infrastructure. It is forseen that a number

of different CABs will be tried and used in various circuit genres. For example, one

can imagine FPAAs targeted at problems in audio processing, image processing, neu-

romorphic signal processing, telecommunications, etc. These different FPAAs need

not largely differ. Instead, a reasonably general–purpose CAB can be tiled across the

FPAA with special–purpose CABs targeted at each genre interspersed among them.

This type of architecture is very similar to modern FPGAs, where a mesh of general–

purpose logic blocks (i.e., asynchronous ROMs and D flip–flops) is interspersed with

specialized blocks, such as dense memory blocks, hardware multipliers, digital filters,

and even entire processor cores.
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Figure 13. Layout, cross section, and circuit diagram of the floating–gate pFET in a standard
double–poly, n-well MOSIS process: The cross section corresponds to the horizontal line slicing
through the layout view. The pFET transistor is the standard pFET transistor in the n-well process.
The gate input capacitively couples to the floating–gate by either a poly–poly capacitor, a diffused
linear capacitor, or a MOS capacitor, as seen in the circuit diagram (not explicitly shown in the
other two figures). Between Vtun and the floating–gate is our symbol for a tunneling junction—a
capacitor with an added arrow designating the charge flow.

3.4 Floating–gate Technology in Programmable Analog Cir-

cuits

Previous FPAAs have suffered from their small size and lack of functionality/generality.

Next–generation FPAAs need to correct these problems in order to extend the useful-

ness and acceptance of FPAAs. Ideally, one would like a small, easily programmable

element that can be configured to act as an ideal switch, variable resistor, and con-

figurable computational element. While such a device is indeed ideal, floating–gate

transistors do offer some of these qualities. Previously, we have shown that the

floating–gate transistor can be used as a (nonideal) switch, variable resistor, and

programmable element within larger computational blocks (e.g., analog multiplier,

programmable filter, programmable OTAs, etc.) [36].

In addition, the small size of the floating–gate structure will allow larger, more
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Figure 14. Standard designs often achieve circuit programmability by embedding switchable arrays
of elements (such as transistors or capacitors) within the logic cells. Here, a conceptual version
of [65]’s programmable current mirror is shown. In their case, 5 bits were used to set the switches.
This required 64 MOS transistors, 31 digitally controlled switches, and five memory cells to hold the
configuration of the switches. Using floating–gate technology, this entire structure can be replaced
with two programmable floating–gate transistors.

functional FPAAs to be built using this technology. One example of the capabil-

ity/area improvement that can be achieved with floating–gate transistors is the pro-

grammable current mirror. Pankiewicz et al. have presented one of the most recent

FPAA designs. Their FPAA is based on OTAs in which the current mirrors on the

differential outputs can be programmed. They use a bank of current mirrors similar

to the simplified form shown in Fig. 14. Each current mirror requires 64 MOS transis-

tors, 31 digitally controlled switches, and five memory cells to hold the configuration

of the switches. The entire structure can be replaced with two MOS transistors and

a programmable floating–gate transistor. The area savings in this case are consider-

able. Furthermore, the resolution of the bank of current mirrors is set at five bits;

whereas, the floating–gate current mirror’s resolution can be varied based on the need

of a given application with a maximum resolution of approximately 10 bits [73].

The floating–gate transistors used in these FPAAs are standard pFET devices

whose gate terminals are not connected to signals except through capacitors (e.g.,

no DC path to a fixed potential) [43]. Because the gate terminal is well insulated

from external signals, it can maintain a permanent charge, and thus, it is an analog
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memory cell similar to an EEPROM cell. With a floating gate, the current through

the pFET channel is dependent on the charge of the floating–gate node. By using

hot–electron injection to decrease the charge on the floating–gate node and electron

tunneling to increase the charge on the floating–gate node, the current flow through

the pFET channel can be accurately controlled [43, 52].

3.4.1 Floating–gate Switches

Using a floating–gate transistor as a switch requires that the device be turned on or

turned off. Ideally, the on state corresponds to the free flow of current through the

device or equivalently, zero impedance between the source and the drain. Likewise,

the off state is ideally characterized by zero current flowing through the device – an

infinite impedance between the source and the drain nodes. A floating–gate tran-

sistor, however, will not act as a perfect switch. The on state will be characterized

by an impedance greater than zero, and the off state will have an impedance less

than infinity. Therefore, the quality of a floating–gate transistor as a switch will be

determined by measuring the on and off impedances.

The quality of the switches is an important factor in determining the final archi-

tecture. The main concern is that routing a signal through multiple switches could

degrade data as the cummulative impedance of the switches becomes prohibitive.

The impedance of the floating–gate transistor is a function of the charge on the

floating–gate node allowing it to be set using hot–electron injection and electron

tunneling. Figure 15 shows the relative I–V curves for a floating–gate transistor as

it is programmed from off to on. Ideally, each transistor would be programmed to

the extreme ends of the graph, but programming floating–gate transistors is a time–

comsuming task. The desired quality of the switch will have to be chosen with regard

to the time it will take to program the device.

Choosing a reasonable time scale for programming leads to a compromise in the

quality of the switch. Also, note that the operating voltage of the gate node is not
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Figure 15. This is a current–voltage plot of a single floating–gate transistor programmed to different
levels of floating–gate charge. The floating–gate transistors can be programmed over a wide range
of currents.

fixed. Due to the parasitic capacitances between the gate and drain/source nodes,

the gate voltage—and thus the switch’s impedance—will vary as a function of the

signal current. This variation must be minimized.

3.4.2 Switch as Computational Element

When used as a switch, the floating–gate should be as transparent a part of the

circuit as possible. However, Fig. 15 shows that the floating–gate transistor can be

used as an in–circuit element [42, 51]. By adjusting the charge on the floating–gate

node between the extremes used for on and off, the impedance of the switch can be

varied over several orders of magnitude. Thus, a variable, non-linear resistance can

be synthesized by the floating–gate switch.

Using the floating–gate switches as in–circuit elements allows for a very compact

architecture. The physical area needed for the CABs is greatly reduced, because
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Figure 16. By selectively setting the gate and drain voltages of the columns and rows, a sin-
gle floating–gate transistor can be programmed using hot–electron injection without affecting the
neighboring devices.

resistors, which consume relatively large amounts of space on CMOS processes, are

not needed as separate components. Also, by reducing the number of individual

circuit elements, signal routing is simplified without losing functionality.

3.4.3 Programmability

The use of floating–gate devices as the only programmable element on the chip,

greatly simplifies chip configuration. Additionally, all of the floating–gate transistors

are clustered together to aid in the programming logic and signal routing. Decoders

on the periphery of the circuit are connected to the drain terminals, source terminals,

and gate capacitors of the floating–gate matrix. In programming mode, these decoders

allow each floating–gate transistor to be individually programmed using hot–electron
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Figure 17. This is a typical resistance plot for a pFET switch in the on configuration. With an
exponentially increasing resistance as the DC bias approaches 0 V, the pFET switch clearly does
not pass low voltage signals very well.

injection (see Fig. 16) [52].

Part of the previous work has been the development of a systematic method for

programming arrays of floating–gate transistors [51, 52, 76]. A microprocessor–based

board has been built to interface a PC to these analog floating–gate arrays for the

purposes of programming and testing. With a PC controlling the programming of

these devices, the details of using hot–electron injection and tunneling to program

individual floating–gate switches have been abstracted away from the end–user. The

programming algorithms have been optimized for accuracy and speed, while giving

the end–user an easy–to–use interface for configuring arrays of floating–gate devices.
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Figure 18. This is a typical resistance plot for a T–gate switch in the on configuration. With
an additional nFET transistor, the T–gate switch exhibits a much lower resistance for low input
voltages than the lone pFET transistor switch. This benefit, however, comes at the cost of more
area and more parasitic capacitance added to the signal line.

3.5 Selecting a Switch

As discussed in Section 2.3.2, a number of different switches that have been tried in

FPAAs. A switch must be selected based on bandwidth, area, and switch quality (on

and off impedances). Typically, the switch is turned on or off with a digital memory

element, such as an SRAM cell. This scheme is popular in modern FPGAs, as it is

well understood and relatively quick to configure.

The simplest switch is a single pFET transistor; however, pFET transistors have

an on resistance that exponentially increases as DC bias voltage drops. A typical

resistance plot for a relatively small pFET device is shown in Fig. 17. As this figure

illustrates, the on pFET device will not pass low voltage signals.

A larger switch can be formed by adding an nFET transistor to the pFET and
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forming a T–gate structure. This allows low–voltage signals to be passed equally as

well as those closer to the positive power rail. As shown in Fig. 18, the resistance

through a T–gate switch is more constant than the lone pFET transistor. The peak

in this resistance plot near 2 V can be changed by carefully sizing the pFET and

nFET that are used in the T–gate switch. While the switch resistance is much better

than the pFET transistor switch, the disadvantages of the T–gate structure include

increased area and lower bandwidth due to the increased parasitic capacitance. The

T–gate switch requires an additional nFET transistor and an inverter for the select

lines (two more transistors). Thus, it is at least three times larger then the simple

pFET switch. Also, the extra nFET transistor in the signal path means at least dou-

bling the parasitic capacitance and resistance. Increasing the parasitics on one or two

switches may not seem significant; however, as mentioned previously, the parasitics

are summed across the rows and columns of the switch networks. Even a moder-

ately sized FPAA could have 50–100 switches along a single dimension. Doubling

the parasitics on each switch in the network would result in a significant decrease in

bandwidth.

A perfect switch would have the small size, minimal parasitic effects, and simplicity

of the pFET switch and the lower, more constant resistance of the T–gate switch.

The floating–gate switch comes close to this ideal. As shown in Fig. 19, the resistance

of the floating–gate switch is much more constant across the full voltage swing than

the pFET transistor. By injecting the floating–gate node to an extremely on point,

the effective voltage on the gate of the transistor is allowed to drop below 0 V. This

results in a shifting of the resistance curve until the exponential region is pushed below

0 V as well. The primary trade–off for this increased performance is configuration

speed. Programming floating–gate switches to this extreme position currently takes

nearly one to two minutes. The current programming scheme, however, is externally

controlled. By moving the programming scheme onto the chip and optimizing the logic
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Figure 19. This is a typical resistance plot for a floating–gate switch that has been programmed
into the extreme on position. By injecting the floating–gate node, the effective voltage on the gate
of the switch is allowed to drop below 0 V. This results in a shifting of the resistance curve until the
exponential region seen in Fig. 17 is pushed below 0 V as well.

for programming switches, a significant increase in speed can be achieved. In addition,

work is progressing within the CADSP group on parallelizing the programming control

logic so that an entire row or column of switches can be programmed at once. The

potential decrease in programming time with this scheme is quite dramatic.
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CHAPTER 4

RASP 1.0

Large signal processing systems will require a chip with many (100 or more) computa-

tional analog blocks (CABs) on it. However, before such a chip could be successfully

designed, a number of implementation details were tested on a smaller scale. Specifi-

cally, two testbed FPAAs have been designed, fabricated, and tested as a part of this

thesis. Reconfigurable Analog Signal Processor (RASP) 1.0 was primarily used to

characterize the switch networks and test small systems, and it will be discussed in

detail in this chapter. RASP 1.5 was similar; however, a number of layout and archi-

tectural improvements were made that increased the quality of switches and allowed

larger testbed systems to be synthesized. Chapter 5 contains a detailed discussion of

RASP 1.5.

RASP 1.0 was fabricated in a 0.5-micron, standard CMOS process. A die photo

of this chip is shown in Fig. 20. This FPAA contains two CABs connected by a

floating–gate crossbar switch network [36]. The CAB design included a bandpass

filter module, 4 x 4 vector–matrix multiplier, and three wide–range OTAs. RASP 1.0

is designed as a testbed integrated circuit (IC) to study the floating–gate switches

and the interaction between the CAB components and the switch matrix [38]. A two

CAB system should be of a sufficient size to test the concept of floating–gate FPAAs.

RASP 1.0 uses floating–gate transistors as the sole programmable element within

the FPAA. Floating–gate analog circuits are used to implement advanced signal pro-

cessing functions and are very useful for processing analog signals prior to A/D con-

version. The architecture introduced here is extensible to larger systems and will

allow systems that go beyond simple programmable amplifiers and filters to include

programmable and adaptive filters, multipliers, winner–take–all circuits, matrix–array

signal operations, frequency decomposition, and subband processing.
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Figure 20. This is a die photo of the RASP 1.0 chip. It contains two CABs with a single switch
network to connect the CABs together.

4.1 Computational Analog Blocks

The computational logic is organized into a compact CAB providing a naturally

scalable architecture. CABs can be tiled across the chip with busses and local inter-

connects in–between as shown in Fig. 21.

Each CAB is comprised of components critical to signal processing applications,

including a 4 x 4 matrix–vector multiplier, three wide–range OTAs, and a transistor–

only version of the autozeroing floating–gate amplifier (AFGA) or capacitively coupled

current conveyor (C4) [40]. The CAB architecture is shown in Fig. 22.
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Figure 21. Block diagram of our generic FPAA chip. (a) Architecture diagram of analog pro-
grammable computing blocks. Future FPAAs will have 100 or more Computational Analog Blocks
(CAB) each with 23 ports to the mesh switching matrix. (b) Signal flow in a single CAB.

4.2 Analog Circuit Components

Selecting the types of analog components to include in a general–purpose FPAA is

a difficult task. To be as universal as possible, one must consider adding a num-

ber of basic linear and nonlinear functions, including integration, summation, gain

amplification, logarithmic and exponential operations, and more [31]. Because these

elements are so basic, constructing larger systems can become very complex due to

the required routing resources. Also, as discussed earlier, as the number of switches

involved in a circuit increases, the cummulative effects of the switches on the circuit

may seriously degrade the performance and/or results. To mitigate these challenges,

RASP 1.0 was constrained to be a signal–processing FPAA with specific functions

such as adaptive filtering and Fourier (frequency domain) processing in mind. A

limited number of basic elements were also included for completeness; however, the

focus was placed on selecting an appropriate mix of higher–level components that

could facilitate the prototyping of a wide range of problems.
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Figure 22. Each Computational Analog Block (CAB) has a four–by–four matrix multiplier, three
wide–range operational transconductance amplifiers (OTAs), and a capcatively coupled current con-
veyor (C4). The input and output signals shown in this figure are routed to the rows of the switch
matrix.

4.2.1 Basic Analog Elements

The basic analog functions such as summation, integration, and gain amplification

can be included in the FPAA with only a few analog components. In the case of

summation, only the switch matrix is needed. Figure 23 shows that if the input

signals are currents, summation is achieved by simply connecting the input signals

together (Kirchoff’s current law).

By adding several configurable OTAs to each CAB, one can configure the FPAA to
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Iout =
∑N

k=1 Ik

Figure 23. The output current of a node is equal to the sum of the input currents (Kirchoff’s
current law).

VddVdd

VtunVtun Vdibl

Vin
+

Iout

-Vin

Iout = Ibias+W
(

V +
in − V +

in

)

Figure 24. Multiplication of a signed (differential) input by a stored weight can be achieved using
two floating–gate transistors. Since the weight is stored as the charge of the floating–gate node it is
both programmble and adaptable.

perform integration, differentiation, gain amplification and more. Also, by including

op–amps in the computational logic, RASP 1.0 can compete with current commercial

offerings that are based solely on programmable op–amps.

4.2.2 Matrix–Vector Multiplication

Multiplication is an important element in many signal processing applications. Fig-

ure 24 shows a basic multiplier using two floating–gate transistors. The differential

voltage input allows signed numbers to be represented. The multiplier’s functionality

can be extended by cascading them together to form a matrix–vector multiplier. Each

CAB on RASP 1.0 has a 4 x 4 matrix multiplier in which four signed (differential)

inputs are mutliplied by a 4 x 4 matrix of programmable weights. The functionality

of this matrix–vector multiplier is shown in Fig. 25. Of course, by setting the appro-

priate weights to zero, matrices smaller than 4 x 4 can be multiplied by the input

vector.
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Figure 25. Matrix–vector multiplication is achieved by cascading the floating–gate multiplier shown
in Fig. 24 and summing the outputs along each row. The multiplier outputs are current values, so
they can be summed by tying the signal lines together. The weight matrix is stored as the charges
on the floating–gate nodes of the transistors that form the multipliers.
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Vdibl

Vhigh

Vlow

C1

C2

Cw

Figure 26. This circuit is a capacitively coupled current conveyor (C4). It is an element in the CAB
and performs a bandpass filter operation. The corner frequencies of the filter can be programmed
using the floating–gate current sources that connect through a current mirror to the biases Vlow and
Vhigh.

4.2.3 Filtering and Fourier Processing

FPAA devices based on RASP 1.0’s floating–gate architecture can have as many as

100 or more CABs on a single chip. At this level of complexity, a number of interesting

signal processing systems can be implemented using a Fourier processor. An analog

Fourier processor decomposes an incoming signal into its frequency components (sub-

bands). Each subband is then operated on before reconstructing the output signal

by summing the subbands together. This is analagous to taking a Fourier transform,

operating on each frequency component, and then taking an inverse Fourier transform

to generate the time–domain output signal.

In RASP 1.0, the frequency decomposition is done by using C4 circuits to bandpass

filter the incoming signal [44, 52]. A C4 circuit is built using two floating–gate tran-

sistors and several capacitors as shown in Fig. 26. This method allows the bandpass
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Figure 27. The switching matrix is built with floating–gate transistors. The charge of the floating–
gate node can be adjusted to allow current to flow through the channel (on) or to restrict current flow
(off). When in programming mode, T–gates connect the floating–gate transistors to the decoders,
and when in operational mode, the decoders are unconnected and the output signals are switched
on.

filters to be programmably placed at the desired frequencies (some applications prefer

linear spacing while others prefer logarithmic spacing of the subbands). When used

in combination with the floating–gate multiplier, a wide range of filters, including

adaptive filters, can be achieved [43].

4.3 Switch Matrix

RASP 1.0 has one 16 x 64 crossbar switching matrix that provides local interconnects

between the two CABs and connections to the external input/output signal lines.

The switching matrix uses floating–gate transistors as the switches (Fig. 27).

The digital decoders on the outside of the switch matrix provide access to the

individual floating–gate transistors for programming. After programming is complete,

the decoders are disconnected (using T–gate switches), and external bus lines are
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connected to start the operation of the chip.

The source lines of the 16 floating–gate switches in each row are connected to-

gether; likewise, the drain lines of the 64 floating–gate switches in each column are

tied together. Programming a switch to on allows current to flow in the source–drain

channel and connects a row with a column. Programming a switch to off restricts

the current flow in the channel creating a very high impedance between the row and

column.

The input/output signals from each CAB are connected to the source nodes of the

floating–gate switches. The drain nodes (columns) are either connected to external

busses or are used for internal connections only. By doing this, any input/output

signal from the CABs can be connected to an external bus by turning on one floating–

gate switch. Similarly, it can be connected to another signal in the same CAB or to

a signal in an adjacent CAB by turning on two switches in the same column.

4.3.1 Floating–gate Switches

As mentioned in Chapter 3, using a floating–gate transistor as a switch requires

that the device be turned on or turned off. Ideally, the on state corresponds to the

free flow of current through the device or equivalently, zero impedance between the

source and the drain. Likewise, the off state is characterized by zero current flowing

through the device – an infinite impedance between the source and the drain nodes.

A floating–gate transistor, however, does not act as a perfect switch. The on state is

characterized by an impedance greater than zero, and the off state has an impedance

less than infinity. Therefore, the quality of a floating–gate transistor as a switch is

determined by measuring the on and off impedances.

The floating–gate switch network has been characterized in [37]. The switches

were found to exhibit similar characteristics to standard pFET switches with an on

resistance as low as 11 kΩ and an off resistance in the low gigaohm range. They

have also been shown to be accurately programmable and capable of implementing a
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Figure 28. Floating–gate switches can be programmed within a wide range. Here, examples of
an on, off, and mid–position device are shown. During programming, currents are measured with
VDD = 3.3 V for large currents and VDD = 6.5 V for small currents. This effectively extends the
programming range of the device.

variable resistance. As shown in Fig. 28, the floating–gate switch can be programmed

between the on and off extremes.

To increase the quality of a switch, the floating–gate transistors are programmed

to the far extremes of their range. When switches are being programmed off, currents

in the low picoampere range must be measured. These measurements are near the

limits of standard laboratory equipment; therefore, to extend the viable programming

range, current measurements are taken at a larger drain–to–source voltage. Typically,

VDS is set to the supply voltage, VDD, and an increase in VDS is achieved by increasing

VDD. As shown in Fig. 28, measuring the currents with VDD = 6.5 V , allows the I–V

curves to be visible to the programming infrastructure 1 V below the point visible

when VDD = 3.3 V [38].

For simplicity, the voltages on the gate capacitors of all the switches are set to a
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constant potential. This means that the voltage driving the gate capacitors will be

the same for both on and off switches. To determine the appropriate gate voltage

for run mode, the relative quality of on and off switches must be balanced. From

Fig. 28, it is clear that the off switches do not pose a problem, since any gate voltage

selected at or above 0.3 V should provide a sufficiently high impedance. However, the

on switch exhibits a decrease in quality as the gate voltage is increased to VDD. Thus,

an operating gate voltage of 0.3 V is deemed optimal for the current programming

scheme.

4.4 Circuit Characterization

The resistance of the floating–gate switch in the on position proved similar to standard

pFET switches with the measured on–resistance starting at 11 kΩ. As shown in

Fig. 29a, the architecture of our FPAA required that the resistance be measured

through two devices in series. During these experiments, both of the transistors

were programmed to the same position; the measured resistances shown here have

been divided by two to report the resistance for a single transistor. The resistance

of the floating–gate switch in the off position was not directly measured due to the

extremely small currents. Instead, the saturation current of the device was determined

(Fig. 29b). This data was acquired with VDD = 7.5 V since this was the first reliable

measurement voltage. The resistance can then be calculated to be R = UT

ISAT
=

25.8 mV
145.4 pA

= 177.5 MΩ. At an operating VDD = 3.3 V , the off–resistance is higher. At

this level, the worst case bias current is 70 pA, which equates to an off resistance in

the 1 GΩ range.

Figures 29c and 29d show the current and resistance of a switch as it is pro-

grammed mid–way between the on and off positions. As can be seen by the current

measurements, these devices have been injected close to the off position. While this

resistance is non-linear over the full operational range, linearity can be achieved given
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Figure 29. Switch Characteristics of Floating–gate Transistors: (a) Resistance for an on switch
was measured using two floating–gate devices in series, both programmed to the on position. Here,
the experimental resistance has already been divided by two to represent a single floating–gate
switch. (b) Currents for an off switch are too low for reliable picoammeter measurements. So, a
conservative off resistance was determined by measuring the saturation current of a floating–gate
transistor programmed to the off position while VDD = 7.5 V . (c) The floating–gate switch can
also be programmed mid–position (between on and off) to synthesize a variable resistance. Here, a
sampling of the differential currents achievable with this programming scheme are shown. (d) The
resistance plots correspond to the same injection levels as the differential currents shown in (c).
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Figure 30. This is a floating–gate switch programmed to 8 nA at an operating gate voltage of 0.3 V.
Thus, current sources can be accurately defined within the switching network itself.

a sufficient constraint on the input.

Using the programming method described in [74], floating–gate switches in the

FPAA can be accurately programmed. Figure 30 shows a switch that was pro-

grammed to an arbitrary current of 8 nA at an operating gate voltage of 0.3 V.

Thus, floating–gate switches can be used to accurately set a current level within the

system (i.e., these devices can be used to implement a current source).

4.5 System Results

As an initial example of the testbed system, a first–order filter is implemented using

an OTA in one of the CABs. Figure 31 shows how the circuit is mapped onto the

FPAA using five floating–gate switches. Once the switch network is configured, the

biasing floating–gate transistor is programmed to vary the corner frequency of this

first–order filter. The frequency response is shown for several programmed corner
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Figure 31. (a) The source–follower configured using a floating–gate current source. By programming
the floating gate charge, the current is set in the current mirror (the other half of the current mirror
is internal to the wide–range OTA) is fixed. Thus, the effective conductance can be modified for each
of the OTAs on the chip. (b) Using the switch matrix, an OTA located in one of the Computational
Analog Blocks (CABs) is connected in a source–follower configuration, and two external pins are
routed to the OTA as the input and output signals. The programmable biases illustrated in (a) are
not shown here for simplicity, but each OTA has a current mirror and floating–gate current source
that sets its bias.

frequencies in Fig. 32. The moderate gain in the lower frequencies is due to the

switches in the feedback loop of the OTA. Ideally, the output node and the negative

input node would be directly connected. However, in the FPAA, this path must be

routed via the switch network, which means that a minimum of two floating–gate

switches will be in the feedback loop. The gain can be minimized by injecting the

floating–gates of these switches to a lower charge, or if gain is desired for a given

application, then it can be set by programming these switches to a higher charge.

In Fig. 33, a second–order section filter is shown along side the FPAA imple-

mentation. Once again, explicit capacitors are eliminated since the switch parasitics

provide the necessary capacitance. Using the floating–gate programmble biases, the

two OTAs in a source–follower configuration were biased to the same level and the

the third OTA’s bias current was increased to adjust the Q–peak of the system. The

simulated frequency response for this circuit is shown in Fig. 34. As expected, the
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Figure 32. Here, the frequency response of the source–follower circuit is shown for several bias
currents. An internal floating–gate transistor is used as a current source to set the OTA’s bias.
Injecting the floating–gate device, increases the current and thus the bandwidth of this first order
filter.

Q–peak increases as the bias current (e.g., conductance) increases. The experimental

frequency response shown in Fig. 35, also shows a programmable Q–peak; however,

the peak is not very high. This is most likely an effect of the switches in the signal

paths. Improvements were made to the OTA and switch components in RASP 1.5,

and a much higher Q–peak resulted (see Chapter 5).

For second–order functions such as the second–order section and the diff2 circuit

introduced by Mead in [62], reasonable Q–peaks and filter bandwidths require small

bias currents (in the picoamp to femtoamp range). While the floating–gate transistors

can set bias currents this low, the constraint becomes the ability to accurately measure

these currents while programming the floating–gate transistors. Experimental results

from Fig. 28 show a measurement threshold of 1 pA using present measurement

techniques. An important consideration here is the relative size of the transistors
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that set the bias currents. The floating–gate transistor shown in Fig. 31a sets the

current through the nMOS current mirror (the other half of the current mirror is

internal to the OTA module). To set small bias currents, it is preferable to have the

nFET and floating–gate transistor sized larger than the current mirror nFET, which

is internal to the OTA. In this configuration, the current mirror functions as a current

divider, and thus, very low bias currents can be set by programming the floating–gate

transistor to generate currents in the picoamp range.

Based on these testbed systems, one can start to imagine a wide class of systems

that can be implemented and configured on FPAAs with many CABs on them. In

particular, differentiators, cascaded second–order sections, bandpass filters, matrix

transforms (including DCTs and wavelet transforms), and frequency decomposition

are all well–suited for this architecture. In the audio arena alone, designs could

be prototyped to implement forms of noise suppression, audio enhancement, feature

extraction, auditory modeling, and simple audio array processing. Other potential

interest areas include communications signal conditioning (modulation, mixing, etc.),

transform coding, and neural networks (with external training). Most of these systems

rely on efficient subband processing; therefore, each CAB has been designed with a

C4 bandpass filter to optimize this operation. A realistic simulation of this C4 block

is shown in Fig. 36 with the center frequency of the C4 filter being moved over a large

range of frequencies.

4.6 Summary

FPAAs based on floating–gate technologies are an emerging design concept that will

increase the current state of the art in the analog and mixed–signal prototyping. In

particular, these FPAAs are well–suited to facilitate the design of low–power sig-

nal processing systems based on analog floating–gate devices. In this chapter, a
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Figure 33. (a) A second–order section filter can be implemented with two OTAs in a source–follower
configuration and a third OTA that creates postive feedback. (b) Using the switch matrix, two OTAs
within the CABs are connected in a second–order section configuration. The programmable biases
shown in Fig. 31(a) are not included here for simplicity, but each OTA has a current mirror and
floating–gate current source that sets its bias.
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Figure 34. The simulated frequency response of a second–order section filter is shown here. The
Q parameter is adjusted by increasing the bias current of the positive feedback amplifier via a
floating–gate current source.

novel FPAA architecture was presented that utilizes floating–gate transistors as pro-

grammable switches, in–circuit active elements, and the configurable device within

the computational analog blocks. Floating–gate switches were characterized and sev-

eral systems were implemented on this FPAA. In the next chapter, an updated version

of the RASP 1.0 FPAA is discussed, and additional system–level data is shown.
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Figure 35. The experimental frequency response of a second–order section filter is shown here.
The Q parameter is adjusted by increasing the bias current of the positive feedback amplifier via a
floating–gate current source.
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Figure 36. Frequency decomposition (subband processing) can be achieved on the RASP 1.0 FPAA
by using the C4 bandpass filter block in each CAB. In this simulation, the center frequency of the
C4 is shown to be programmable over a wide range of frequencies.
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CHAPTER 5

RASP 1.5

The RASP 1.0 FPAA allowed the switches in the switch network to be characterized

and some small systems to be implemented on it. However, a number of circuit–

level changes were needed to realize the full functionality of the RASP architecture.

RASP 1.5 is an FPAA that is similar in size to RASP 1.0, but it has a number of small

circuit and architectural improvements that allow the system–level functionality of

the computational logic to be further tested.

5.1 RASP 1.5 Architecture

The RASP 1.5 FPAA is fabricated in AMI’s 0.5-micron CMOS process. A picture of

the top–level layout is shown in Fig. 37. A die photo of RASP 1.5 is shown in Fig. 38.

5.1.1 RASP 1.5 vs. RASP 1.0

The improvements to RASP 1.5 can be categorized as programming infrastructure,

circuit–level, and architectural changes. In the programming infrastructure, advance-

ments were made to bring more of the programming logic on the chip. During pro-

gramming mode, the control logic on RASP 1.5 automatically sets the gate and source

voltages on the non–selected rows to turn all switches off except the one currently

selected.

At the circuit level, a number of the transistors were resized. The switches in the

switch network were made bigger to reduce the resistance through the devices. The

T–gate structures in the programming control logic were also made much bigger to

allow more current to flow through them. This is important when turning on multiple

switches in a column, since the currents through the multiple switches will sum on

the column lines. If the T–gates are not large enough, then the current through the

switches will overload the T–gate causing a voltage drop across the T–gate. This
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Figure 37. This is a picture of the top–level layout for the RASP 1.5 FPAA. It has two CABs and
a single switch network connecting the CABs.

raises the drain voltage on the switches and slows or even stops injection. Additional

changes included modifying transistor sizing in the CAB components to improve the

performance of the computational logic elements. In particular, current dividers were

added on all of the biases so that the currents needing to be sourced by floating–

gate current sources would be in an optimal programming range for the floating–gate

transistors ( 100 pA – 10 uA).

As a part of the architectural changes, two levels of I/O hierarchy are introduced.

On RASP 1.0, signals coming into or going off of the FPAA were only allowed to do
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Figure 38. This is a die photo for the RASP 1.5 FPAA. It has two CABs and a single switch
network connecting the CABs together.

so only through source lines. This scheme requires a minimum of two switches to get

an input or output from the I/O pad to a component input or output. On RASP 1.5,

however, two levels of I/O signals are included: Level 1 and Level 2. Level 2 I/O is

routed through the source lines just like RASP 1.0. Level 1 I/O, however, is routed

into the columns (drain lines). Signals entering RASP 1.5 on Level 1 I/O can be

routed to the input of any component with a single switch. Adding I/O pads to the

columns dramatically increases the capacitance on those drain lines, which results in

lower bandwidths on those nodes. Therefore, only a limited number of drain lines

are used as Level 1 I/O lines. The majority of the columns are reserved for internal

routing.

The second part of the architectural changes involved increasing the size and

functionality of the CABs. First, three fixed–value capacitors, two transistors (one

61



40 Columns

92
 R

ow
s

So
ur

ce
/G

at
e 

C
on

tr
ol

 L
og

ic

Drain Control Logic

Figure 39. The RASP 1.5 has a single fully connectable crossbar switch that has 40 x 92 switches
in it. The gate and source nodes from the transistors run horizontally into the programming control
logic and row decoders on the side of the chip. The drain lines for the columns and run vertically
into the drain control lines and column decoders.

nFET and one pFET), a peak detector, and a min detector were added. Additionally,

the C4 bandpass filter block was replaced with a C4–based second–order section (SOS)

bandpass filter module (see Section 5.2).

5.1.2 Switch Networks

As shown in Fig. 39, the routing infrastructure on RASP 1.5 is achieved with a single,

fully connectable crossbar switch. The switch network has 40 columns (drains) and

92 rows (sources). The inputs and outputs from all of the components in the two

CABs connect to the rows of the switch network. I/O lines that go off the FPAA chip

are divided into two levels: Level 1 and Level 2 I/O. Level 1 I/O pins are connected
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directly to the columns allowing them to be connected to any input or output on

the computational logic through a single switch. There are six Level 1 I/O pins on

RASP 1.5 and two of them are dedicated outputs since they are routed through an

output buffer in their I/O pads. There are 12 Level 2 I/O pins. They connect to the

switch network via extra rows that are not used for the computational logic. Level 2

I/O pins require at least two switches to connect them to any input or output of the

computational logic.

5.2 Computational Analog Blocks

The computational logic is organized in a compact computational analog block (CAB)

providing a naturally scalable architecture. CABs are tiled across the chip in a regular

mesh–type architecture with busses and local interconnects in between. In RASP 1.5,

there are two CABs with a single switch network connecting them together.

Many potential CABs can be imagined using this technology. Figure 40 shows one

example CAB, whose functionality is enhanced by a mixture of fine–grained, medium–

grained, and coarse–grained computational blocks similar to many modern FPGA

designs. The computational blocks were carefully selected to provide a sufficiently

flexible, generic architecture while optimizing certain frequently used signal processing

blocks. For generality, three OTAs are included in each CAB. OTAs have already been

shown to be effective at implementing a large class of systems, including amplification,

integration, filtering, multiplication, exponentiation, modulation, and other linear

and non-linear functions [26, 65, 70, 71]. In addition, the two FET devices provide

the ability to perform logarithmic and exponential functions, as well as convert from

current to voltage and vice versa. The three capacitors are fixed in value in order to

minimize the size of the CAB and are primarily used on the outputs of the OTAs;

however, they will be available for any purpose. The use of floating–gate transistors in

the OTAs will give the user sufficient control in programming the transconductance of
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Figure 40. The CAB on RASP 1.5 contains a four-by-four matrix multiplier, three wide–range
operational transconductance amplifiers (OTAs), three fixed–value capacitors, a capacitively coupled
current conveyor (C4) second–order section (SOS), a peak detector, a min detector, and two FET
transistors.

the amplifiers, thereby eliminating the need for the variable capacitor and/or current

mirror banks found in some designs [37, 65]. Removing the capacitor banks creates a

large savings in the area required for each CAB.

The high–level computational blocks used in this design are an SOS bandpass

filter module comprised of two C4 and the 4 x 4 vector–matrix multiplier block.

In general, the C4 SOS module provides a straightforward method of subbanding

an incoming signal. This allows Fourier analysis analagous to performing a Fourier

transform. The vector–matrix multiplier block allows the user to perform a matrix

transformation on the incoming signals. Together these blocks can be used like a

Fourier processor [44, 52]. In addition, a peak detector and min detector is added to
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Figure 41. This is a block diagram of the second–order section (SOS) bandpass filter module used
in RASP 1.5’s CAB. The C4 SOS is comprised of two C4 circuits (as shown in Fig. 42) with a buffer
in between them. The corner frequencies for both the C4’s are independently controlled with the
floating–gate current sources located in the CAB.

each CAB.

The bandpass filter module is different from that of RASP 1.0. As shown in

Fig. 41, the bandpass filter is an SOS that is comprised of two C4 circuits with a

buffer in between them. Both C4 blocks have the circuit topology shown in Fig. 42.

As shown in the figure, the C4 circuit automatically sets the Vdibl gate voltage needed

in RASP 1.0 (see Fig. 26). This increases the linear range of the module while

maintaining relative ease of control. The corner frequencies for both of the C4 blocks

are controlled with the floating–gate current sources located in the CABs. This allows

the maximum flexbility and control.

5.3 Testbed FPAA

RASP 1.5 contains two CABs with a floating–gate crossbar switch network connecting

them. Both CABs are identical to the large CAB illustrated in Fig. 40.

As discussed earlier, the resistance and capacitance of the floating–gate switch

are important characteristics. The on switch resistance is plotted in Fig. 43. For

reference, this figure also shows the resistance of a standard pFET (with an SRAM

memory bit setting the gate) and T-gate (both an nFET and a pFET passing the

signal). When programmed to a point that is not extremely on, the floating–gate
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Figure 42. This is the version of the capacitively coupled current conveyor (C4) used in the second–
order section in RASP 1.5’s CAB. It does not use an explicit C2 capacitor in the middle node. Also,
this diagram includes an “autodibl” circuit that automatically sets the Vdibl gate voltage based on
the selected corner frequencies. This increases the linear range of the module while maintaining
relative ease of control.

switch exhibits a resistance that is very similar to the standard pFET shown here

(as seen in [37]. However, by injecting the floating–gate switch further, the voltage

on the isolated gate node is pushed lower and thus the resistance curve shifts to the

left. This figure shows that by programming the switch far enough, the resistance

through the switch can maintain a more consistent level through the operating range

(power rails) of the switch. This allows a single floating–gate pFET to exhibit a

resistive characteristic that is similar to the resistance of a standard T-gate with two

transistors. As shown, the resistance of the floating–gate switches is approximately

10 KΩ, which is about what is expected for relatively small (W/L = 3) pFETs.

The off resistance is harder to measure given the limitations of standard test

equipment. Even at VDS = 3.3V , current through the off switches is below the

measureable range of standard picoammeters. Given this, the off resistance should

be in the gigaohm range, and in the worst case, hundreds of megaohms. Likewise, the

parasitic capacitance of the switches is difficult to measure when they are embedded
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Figure 43. Here the switch resistances for a floating–gate pFET, standard pFET controlled by an
SRAM memory cell, and a standard two–transistor T–gate are shown. The floating–gate switch has
been programmed to an extremely on position such that the high–impedance region (at 1.5 V for the
standard pFET shown) has effectively been shifted below the power rail. This results in a relatively
flat resistance similar to the larger T–gate.

in the switch network and accessible only through the programming infrastructure.

A theoretical estimate based on the layout and fabrication parameters yields a value

of 1 fF for each switch on each column and row. Thus, for RASP 1.5, each column

is estimated to contribute 96 fF of parasitic capacitance and 46 fF for each row.

5.4 System Results

A number of different analog testbed systems have been synthesized on RASP 1.5.

These systems vary from simple one– and two–element systems to more complex

systems with as many as seven on–chip components. These systems also use a range

of different CAB components, including fine–grained (transistors and capacitors),

medium–grained (OTAs), and coarse–grained (C4 SOS and peak detector). In each
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Figure 44. (a) The source–follower is configured using a floating–gate current source. By program-
ming the floating gate charge, the current is set in the current mirror (the other half of the current
mirror is internal to the wide–range OTA). Thus, the effective conductance can be modified for each
of the OTAs on the chip. (b) Using the switch matrix, an OTA located in one of the Computational
Analog Blocks (CABs) is connected in a source–follower configuration, and two external pins are
routed to the OTA as the input and output signals. The programmable biases illustrated in (a) are
not shown here for simplicity, but each OTA has a current mirror and floating–gate current source
that sets its bias.

of these examples, floating–gate transistors are used as current sources to set biases.

Depending on the circuit, these programmable biases are shown to control filter corner

frequencies, Q–peaks, and time constants.

5.4.1 Low–Order Filtering with OTAs

As an initial example of the testbed system, a first–order filter is implemented using an

OTA in one of the CABs. Figure 44 shows how the circuit is mapped onto the FPAA

using five floating–gate switches. Once the switch network is configured, the biasing

floating–gate transistor is programmed to vary the corner frequency of this first–order

filter. The frequency response is shown for several programmed corner frequencies in

Fig. 45. The plot in Fig. 46 shows the correlation between programmed bias current

and measured corner frequency. By fitting a curve to this data, it is possible to predict
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Figure 45. Here, the frequency response of the source–follower circuit is shown for several bias
currents. An internal floating–gate transistor is used as a current source to set the OTA’s bias.
Injecting the floating–gate device, increases the current and thus the bandwidth of this first order
filter.

the necessary bias current for a desired corner frequency. This is very important for

the usability of FPAAs in general. The end–user will typically want to specify the

system parameters in terms of corner frequency, Q-peak, time constants, offsets, etc.,

and then let the programming interface make the translation to the appropriate bias

currents necessary to generate these parameters.

In Fig. 47, an SOS filter is shown alongside the FPAA implementation. Once

again, explicit capacitors are eliminated since the switch parasitics provide the nec-

essary capacitance. Using the floating–gate programmble biases, the two OTAs in a

source–follower configuration were biased to the same level, and the third OTA’s bias

current was increased to adjust the Q–peak of the system. The frequency response

for this circuit is shown in Fig. 48. As expected, the Q–peak increases as the bias

current (i.e., conductance) increases.
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Figure 46. This plot shows the correlation between bias current and programmed corner frequency.
This data can be used in future experiments to select the appropriate bias current for the desired
corner frequency.

For second–order functions, such as the second–order section and diff2 circuit, rea-

sonable Q–peaks and filter bandwidths require small bias currents (in the picoampere

to femtoampere range). While the floating–gate transistors can set bias currents this

low, the constraint becomes the ability to accurately measure these currents while

programming the floating–gate transistors. Experimental results from Fig. 28 show a

measurement threshold of 1 pA using present measurement techniques. An important

consideration here is the relative sizing of the transistors that set the bias currents.

The floating–gate transistor shown in Fig. 44a sets the current through the nMOS

current mirror (the other half of the current mirror is internal to the OTA module).

To set small bias currents, it is preferrable to have the nFET and floating–gate tran-

sistor sized larger than the current mirror nFET, which is internal to the OTA. In

this configuration, the current mirror functions as a current divider, and thus, very
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Figure 47. (a) A second–order section filter can be implemented with two OTAs in a source–follower
configuration and a third OTA that creates postive feedback. (b) Using the switch matrix, two OTAs
within the CABs are connected in a second–order section configuration. The programmable biases
shown in Fig. 44a are not included here for simplicity, but each OTA has a current mirror and
floating–gate current source that sets its bias.
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Figure 48. The experimental frequency response of a second–order section filter is shown here.
The Q parameter is adjusted by increasing the bias current of the positive feedback amplifier via a
floating–gate current source.

low bias currents can be set by programming the floating–gate transistor to generate

currents in the picoampere range.

5.4.2 Third–Order Gm-C Ladder Filter

The availability of OTAs and grounded capacitors makes the RASP FPAA ideal for

implementing Gm-C filters. One way to realize a particular filter is by modeling

it with resistors, inductors, and capacitors, and then synthesizing the design using

Gm-C filters. In this example, a third–order Butterworth filter is implemented. The

canonical prototype of the filter, a double–resistance terminated LC filter, is shown

in Fig. 49a. By using the signal simulation method outlined in [79], the Gm-C filter

shown in Fig. 49b is generated. In order to maintain a maximally flat response, the

following must hold: 2∗gm1 = gm2. Accordingly, the bias current of OTA-3 was set to

half of the other OTA bias currents. A range of bias currents was used to create the
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Figure 49. (a) This is the canonical prototype of a third–order Butterworth double–resistance
terminated LC filter. (b) This is the Gm-C implementation of the same filter. This form of the filter
can be realized on the RASP 1.5 FPAA.

frequency response shown in Fig. 50. As expected, the corner frequency of the filter

is proportional to the bias currents of the OTAs. The lower corners were obtained

by using a bias current in the range of hundreds of picoamperes, while the highest

corners required currents of up to one microampere.

5.4.3 Coarse–Grain CAB Components

As mentioned earlier, the CABs on this FPAA have several special–purpose com-

ponents that have been designed to optimize specific functions. In particular, these

CABs include programmable peak detectors and programmable bandpass filter mod-

ules (C4 SOS circuits).

The peak detector’s operation is shown in Fig. 51. A sine wave is input with a

sudden increase magnitude occurring in the middle of the data window. The output of

the peak detector is shown to follow the peak of the sine wave through this transition.

In addition, the time constant of the decay for this peak detector can be varied using
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Figure 50. The experimental frequency response of a third–order Gm-C filter is shown here. The
corner frequency is adjusted by programming the bias currents of the four OTAs.

a floating–gate controlled bias. The output of the peak detector is shown for two

different time constants.

There is a wide range of systems that can be implemented and configured on

FPAAs with many of these CABs on them. In particular, differentiators, cascaded

second–order sections, bandpass filters, matrix transforms (including DCTs and wavelet

transforms), and frequency decomposition are all well suited for this architecture. In

the audio arena alone, designs could be prototyped to implement forms of noise sup-

pression, audio enhancement, feature extraction, auditory modeling, and simple audio

array processing. Other potential interest areas include communications signal con-

ditioning (modulation, mixing, etc.), transform coding, and neural networks (with

external training). Many of these systems rely on efficient subband processing; there-

fore, each CAB has been designed with a C4 SOS bandpass filter module to optimize

this operation.
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Figure 51. The output of the peak detector module is shown to track the peaks of the sine wave
input. The time constant is varied by programming a floating–gate transistor connected as a current
source to the bias of the peak detector module. The outputs of the peak detector shown here are
for two different time constants.

The C4 SOS module is comprised of two C4 modules cascaded with a buffer in–

between them. Either C4 module can be used alone by spreading apart the corner

frequencies of the other module. To characterize this module, frequency response

plots of each of the individual C4 modules are shown in Fig. 52a and 52b. The

bandwidth and Q-peak of the C4 modules are quite different. This is due to the

difference in output capacitance of each module. The output of the first C4 is tied to

the input of a buffer, which results in a relatively small capacitance. The output of

the second C4, however, is tied into the switch network. Therefore, the output load

capacitance for this device will be much higher due to the parasitics of the switches

and the capacitance of the next circuit in the path. In these experiments, the next

stage was a relatively large buffer in an output pad.

When both of the cascaded C4s are set to the same corner frequencies, the output
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Figure 52. The C4 second–order section (SOS) block is comprised of two C4 circuits with a buffer in
between. By spreading the corner frequencies of one of the C4 circuits to be far apart, the frequency
response of the other C4 can be measured. This method is used here to generate the frequency
response plots for the first (a) and the second (b) C4 circuits. Then the frequency response for the
SOS is generated by programming both C4 circuits to the same corner frequencies as shown in (c).
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Figure 53. This is the circuit diagram for a typical subband system. The incoming signal is
bandpass filtered and then the magnitude of the subband is output from the peak detector. This is
analagous to taking a discrete Fourier transform.

of the module shows the desired second–order roll–off as shown in Fig. 52c. In all of

these plots, the corner frequencies are shown to be programmable over a wide range

of frequencies. The bias current to corner frequency correlation is different for each

of the cascaded devices. However, all of the bias currents for these plots were within

the range of 25 pA to 200 nA.

The coarse–grain components are most useful when they can be combined to form

a larger system. In Fig. 53, a circuit is shown that uses a C4 SOS block, an OTA, and

a peak detector in series. This configuration is very powerful when it is replicated 64,

128, or more times on the FPAA with the center frequencies of the bandpass filters

varying over the desired frequency range. The outputs of the different subbands are

analagous to the magnitudes of the discrete Fourier transform. As a test of this

system, data was taken from RASP 1.5 for a single subband. As shown in Fig. 54,

the input is an amplitude–modulated signal with 1.8 KHz and 10.0 KHz frequency

components. The C4 SOS module is biased to have a center frequency near 1.8 KHz,

and the OTA is configured to be a noninverting buffer. The output of the system is

shown in Fig. 54. Also, the output of the system is shown after an external 2.2 µF

capacitor has been added at the output of the FPAA. This change has the effect of

smoothing (i.e., low–pass filtering) the output, thus creating a longer effective time

constant for the system.

To illustrate the use of multiple subbands, the system shown in Fig. 55a was

synthesized on RASP 1.5. Each subband is implemented in a single CAB, and the
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Figure 54. This is the experiment data from the subband system shown in Fig. 53. The input
waveform is an amplitude modulated signal with 1.8 KHz and 10.0 KHz components. The output
of the peak detector is shown with and without an integrating capacitor added to the output stage.

center frequencies of the C4 SOS blocks are programmed to different frequencies. The

results of this system are shown in Fig. 55b. As the input frequency increases with

time, the output from the subband with a center frequency of 1 kHz responds by

increasing to a peak at 1 kHz, and then it decreases as the input frequency increases

past its center frequency. The output of the second subband responds similarly as

the input frequency increases past its center frequency of 3.6 kHz.
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Figure 55. (a) This block diagram shows a two–subband version of the system in Fig. 53. (b)
Experimental data from this system is shown here. As the input frequency increases with time,
the outputs from the two subbands are shown to peak as the input frequency reaches their center
frequency.
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CHAPTER 6

MIXED–SIGNAL PROTOTYPING PLATFORM

The FPAAs introduced here are designed for use within mixed–signal systems. When

coupled with FPGAs, they can provide a complete mixed–signal rapid prototyping

system. In addition, the same infrastructure that is developed to connect FPGAs and

FPAAs during run–time mode can be used during programming mode to configure

the FPAA.

6.1 Development System

The current development system was originally built for the RASP 1.0 FPAA. How-

ever, it has been easily extended to work with more recent FPAAs (and other custom

floating–gate chips as well). The core of the platform consists of an FPGA develop-

ment board and a daughter card for interfacing to the FPAA (Fig. 56). For simplicity,

an off–the–shelf FPGA board is being used here along with a custom daughter card

developed for the FPAA; however, future versions of this system could easily have

the functionality of both boards integrated into a single mixed–signal reconfigurable

prototyping board. Work is also progressing on moving much of the programming

functionality shown here onto the FPAA chip [74]. This effort will further simplify

the board–level design of mixed–signal prototyping platforms.

A block diagram of the overall development system is shown in Fig. 57. A program

running on the PC controls the programming at the highest level. The FPGA receives

the high–level commands from the PC and implements the specific protocols to carry

out the comamand. The FPAA daughter card consists of level shifters and D/A

converters to interface from the FPGA to the FPAA, A/D converters for interfacing

from the FPAA to the FPGA, and the appropriate power supplies for running and

programming the FPAA.
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Figure 56. This is a picture of the mixed–signal prototyping platform. It is currently comprised of
an off–the–shelf FPGA development board and a custom daughter card developed for the FPAA.

6.1.1 FPGA Development Board

The FPGA board used is the Nios Development Kit–Stratix Edition (Nios–Stratix)

provided by the Altera Corporation. In addition to the FPGA IC, the Nios–Stratix

board contains a rich array of prototyping devices, including 1 MB of SRAM, 8 MB

of Flash memory, 16 MB of SDRAM, a CompactFlash connector, an Ethernet con-

nector, two serial ports, and two 41–pin general I/O headers for attaching daughter

boards. The FPGA on this board is a Stratix EP1S10, which contains approximately

300,000 general–purpose logic gates, over 920 Kbits of on–chip RAM, and a number of

specialized digital signal processing blocks. This FPGA is large enough to synthesize

a customized soft–core processor (Altera’s 32–bit Nios processor), and when needed,
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Figure 57. This is a block diagram of the overall mixed–signal development system. The FPGA
receives the high–level commands from the PC and implements the specific programming protocols
to perform the specified operation to the FPAA.

specialized hardware modules that handle timing–critical communication between the

FPAA daughter card and the soft–core processor. The Nios processor controls the

overall programming system and handles the Ethernet communications with the PC.

6.1.2 FPAA Daughter Card

The FPAA daughter card is a custom printed circuit board that has been designed

to interface directly with the I/O headers on the Nios–Stratix FPGA board. The

daughter card has three primary functions:

1. Provide the physical interface between the FPAA and the FPGA

2. Provide supply voltages for the FPAA in both programming and operational

modes

3. Provide current and voltage feedback data to the FPGA for controlling the

programming algorithms and analyzing systems implemented on the FPAA

The interface to the FPGA is complicated by the requirement that the FPAA’s

supply voltage must be able to vary during programming. Thus, the digital control
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signals coming from the FPGA must be level shifted to be compatible with the supply

voltage of the FPAA at any given time during the programming process. Open–

collector inverting buffers are used for this purpose; the outputs of the inverters are

pulled up to the FPAA’s power supply with resistor networks.

The FPAAs discussed in this thesis are designed to operate at very low currents.

Bringing these currents off of the FPAA while maintaining a reasonable SNR is very

difficult. In addition to using standard board design techniques, great care must

be taken when dealing with small currents. For example, current outputs can not

be routed through an I/O header block, because the pin–to–pin resistance for stan-

dard headers is in the tens of megaohms range. This can lead to nanoampere or

even low microampere leakage currents between the pins, which will drastically affect

measurements when the desired currents are at or below this range. Ideally, current–

to–voltage converters will be integrated onto future FPAA ICs and currents will not

be dealt with at the board level. However, on legacy chips, pins must be raised off of

the board and connected directly to picoammeters to achieve reliable measurements.

6.2 Programming Software

There are three different levels of software currently used to program the RASP

FPAAs. At the most abstracted level, a graphical schematic–entry environment is

used to specify the desired circuit. Next, a Matlab script is used to initiate pro-

gramming of the individual switches and biasing transistors needed to implement the

circuit. Finally, firmware running on the the soft–core processor (synthesized on the

FPGA) receives the commands from the PC and executes the programming protocols

to set the individual floating–gate transistors at the desired current levels.

6.2.1 Graphical Circuit Specification

A custom Visual Basic program has been written to enable graphical specification of

the desired circuit. Design entry is completed by manually selecting the rows and
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Figure 58. This is a screen capture of the graphical FPAA configuration software. This program
allows the user to enter a circuit diagram graphically and export a text file with netlist for the
entered circuit. This version of the software is customized for the RASP 1.0 FPAA. A circuit is
entered by clicking on the switch symbols (squares) to specify each on switch.
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columns for each signal path in the desired circuit. As shown in Fig. 58, RASP 1.0 is

small enough to allow the entire switch network and CAB components to be displayed

on a single screen. This greatly simplifies the program code and design entry. Larger

FPAA designs will require that more complexity be added to this software.

To enter a design, the user clicks on the individual switches (illustrated by square

checkboxes) to turn them on or off. When a switch is turned on, an implicit connection

is made between the row and column of the switch. Multiple switches can be turned

on for any given row or column. Selecting Preview from the File menu will hide the

off switches and explicitly show the column and row connections. As an example,

the second–order section (SOS) circuit introduced in Fig. 47 was entered into this

program. The Preview–mode view of this circuit is shown in Fig. 59.

Bias currents can be specified for each of the CAB components by clicking on the

respective component in the program window. A unique dialog box will appear for

each CAB component that allows the user to specify the appropriate biases for that

component. These biases are not used or displayed elsewhere within this program,

but they are exported in the output netlist file.

Once a circuit design is entered into the graphical configuration program, a circuit

netlist is exported. This netlist contains the row and column indices for each switch

that needs to be turned on and pertinent information for each of the CAB component

bias transistors being used. The netlist file for the SOS circuit illustrated in the

previous figure is shown in Fig. 60. As can be seen in this figure, the switches are

listed without voltage and current information, since switch programming is uniformly

implemented in the programming code. The bias transistors, however, must have

voltage and current values specified. In this case, there are three biases (for the three

OTAs in the circuit) that must be set. The current values for these biases are all

specified at a gate voltage of 0.3 V, since that is the operating gate voltage of the

floating–gate transistors during run mode.
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Figure 59. In Preview mode, the software connects the switches that are turned on and turns the
rest of the switches off. This view allows the user to more easily verify the entered circuit design.
Here, the second–order section (SOS) shown in Fig. 47 has been entered.
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Switch?, Row, Column, Voltage, Current

1, 12, 13, 0, 0

1, 15, 14, 0, 0

1, 18, 14, 0, 0

1, 13, 14, 0, 0

1, 16, 15, 0, 0

1, 19, 15, 0, 0

1, 14, 14, 0, 0

1, 17, 15, 0, 0

1, 20, 14, 0, 0

1, 32, 15, 0, 0

1, 33, 13, 0, 0

0, 8, 16, 0.3, 300e-9

0, 9, 16, 0.3, 300e-9

0, 10, 16, 0.3, 340e-9

Figure 60. The graphical FPAA configuration software outputs a netlist that includes the complete
circuit specification. This sample netlist file is the output for the second–order section circuit as
entered in Fig. 59. The row and column numbers used here are for the RASP 1.0 FPAA. This
netlist can be directly converted into a Matlab script that will configure the FPAA to synthesize the
specified circuit.

6.2.2 High–level Matlab Code

Matlab is correctly used to implement the high–level command and control of the

programming circuitry. During development, the details of the programming algo-

rithms were also implemented in Matlab. However, as settings were solidified, most

of the low–level details of programming were moved to the firmware executing on the

FPGA. At this point, Matlab is used primarily for its ability to easily script the pro-

gramming commands for a given circuit. In addition, Matlab is used during run–time

to retrieve data from the FPGA and computer–controlled measurement equipment.

It is then used to view and analyze the data.

6.2.3 Low–level C Code

The FPGA has a customized Nios soft–core processor synthesized on it. The firmware

running on this processor is written in C and controls the low–level details of pro-

gramming. The Nios processor has SPI peripherals implemented on the FPGA that

communicate with the D/A converters on the FPAA daughter card to control the
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voltages needed during programming. The Nios processor also controls the external

picoammeter via a serial port peripheral. Implementing the programming algorithms

directly in firmware speeds up the programming process by avoiding the overhead

incurred in computer–to–FPGA communications.
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CHAPTER 7

FPAAS: A ROADMAP TO THE FUTURE

Large–scale FPAAs are feasible. While previous FPAAs have suffered from their

small size and lack of functionality/generality [4, 49, 54, 59], next–generation FPAAs

based on the architecture introduced in this thesis can overcome these challenges,

thereby extending the usefulness and acceptance of FPAAs. In addition, large–scale

FPAA designs with computational logic included at multiple levels of granularity will

address the complex design space that analog designs entail (including a wide–range

of linear and non–linear functions) while keeping switch parasitics minimized.

The work outlined in this thesis is only the beginning of modern FPAA research.

As a direct result of the research explored in this thesis, a number of different research

avenues have emerged. Many of these directions are already being pursued by doctoral

students within the CADSP group, and others will be explored as time and resources

become available. In addition to future research, a start–up company coming out

of the CADSP group is working to commercialize this FPAA technology. Impetus

on the development side of FPAAs in cooperation with the research activities in

the CADSP group will provide an ideal environment for advancing FPAAs from a

laboratory testbed to a robust, off–the–shelf solution.

7.1 Next–generation RASP

The next–generation RASP FPAA architecture has been developed as a part of this

thesis. Chips based on this architecture have been designed with as many as 72 CABs

on them. Several designs are currently being fabricated. One of those FPAAs, dubbed

RASP 2.5, is described in more detail in this section. A top–level block diagram for

RASP 2.5 is shown in Fig. 61.
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Figure 61. This is the top–level block diagram for the RASP 2.5 FPAA. It has a non-homogeneous
mesh of CABs with 16 full CABs and 40 small CABs for a total of 56 CABs.

7.1.1 Switch Networks

As shown in Fig. 62a, the routing architecture of our large–scale FPAAs is a combi-

nation of global and local switch networks. Each CAB has an associated local switch

network for making connections within a single CAB. The switches’ source lines are

routed along the rows and connect the inputs and outputs of each CAB to the switch

network. The drain lines of the switches are connected along the columns. By turning

a switch on, a single row (source) can be connected through the switch to a single

column (drain).

The size of the switch network is dependent upon the number of I/O lines in each

CAB. For the design shown in Fig. 62, there are two types of CABs. For the large

CABs, the local switch networks are comprised of a 10 x 42 matrix of switches; in the

small CABs, the local switch network is a 10 x 32 matrix. Each local switch network is

integrated into a matching global routing switch network. The global routing switch
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Figure 62. (a) This block diagram shows the routing architecture for RASP 2.5. The switching
interconnects are fully connectable crossbar networks built using floating–gate transistors. (b) This
FPAA has two slightly different CABs. The large or regular CAB contains a 4 x 4 matrix multiplier,
three wide–range OTAs, three fixed–value capacitors, a C4 SOS, a peak detector, and two FET
transistors. The small CAB is the same except it does not include the 4 x 4 matrix multiplier. This
design includes large CABs at the top and bottom of each column and small CABs in between.

network allows local signals from a CAB to be connected to the global routing busses

and be routed off the chip or to another CAB. There are also 10 x 8 switch networks

at each junction of the horizontal and vertical global routing busses.

7.1.2 Computational Analog Blocks

The computational logic in RASP 2.5 is organized in a compact CAB providing a

naturally scalable architecture. CABs are tiled across the chip in a regular mesh–

type architecture with busses and local interconnects in between as shown in Fig. 62a.

Many potential CABs can be imagined using this technology. Figure 62b shows

one example CAB, whose functionality is enhanced by a mixture of fine–grained,

medium–grained, and coarse–grained computational blocks similar to many modern

FPGA designs. The computational blocks were carefully selected to provide a suf-

ficiently flexible, generic architecture while optimizing certain frequently used signal

processing blocks. For generality, three OTAs are included in each CAB. OTAs have
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Figure 63. This is the top–level layout for the RASP 2.5. It is comprised of 16 large CABs (on the
top and bottom rows) and 40 small CABs for a total of 56 CABs. In TSMC 0.35-micron process, it
covers an area of approximately 9 mm2.

already been shown to be effective at implementing a large class of systems includ-

ing amplification, integration, filtering, multiplication, exponentiation, modulation,

and other linear and non-linear functions [26, 65, 70, 71]. In addition, the two FET

devices provide the ability to perform logarithmic and exponential functions, as well

as convert from current to voltage and vice versa. The three capacitors are fixed in

value to minimize the size of the CAB and are primarily used on the outputs of the

OTAs; however, they will be available for any purpose. The variable capacitor and/or

current mirror banks found in some designs are not needed here, because the use of
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Figure 64. This picture is a more detailed look at the small CAB and associated local switch
network.

floating–gate transistors in the OTAs will give the user sufficient control in program-

ming the transconductance of the amplifiers [37, 65]. Eliminating the capacitor banks

creates a large savings in the area required for each CAB.

The high–level computational blocks used in this design are an SOS bandpass

filter module comprised of two C4 and the 4 x 4 vector–matrix multiplier block. In

general, the C4 SOS module provides a straightforward method of subbanding an

incoming signal. This is analagous to performing a Fourier transform. The vector–

matrix multiplier block allows the user to perform a matrix transformation on the

incoming signals. Together these blocks can be used like a Fourier processor [44, 52].

In addition, a peak detector is added to each CAB.

The architecture illustrated in Fig. 62a is non-homogeneous in that there are two
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Figure 65. This picture is a more detailed look at the full CAB and associated local switch network.

different CABs tiled across the chip. The small CAB is identical to the large CAB

except it does not include the vector–matrix multiplier module. Since the vector–

matrix multiplier takes four inputs and each input will often be derived in a separate

CAB (from a separate subband created by the C4 SOS module), designs will typically

utilize only one vector–matrix multiplier for every four CABs. Thus, FPAAs that have

50-100 CABs can be made more compact by removing the vector–matrix multiplier

from all the CABs except those on the top and bottom rows (assuming the FPAA is

more or less square in design).

A sample FPAA based on this architecture with 56 CABs (16 large CABs and 40
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Figure 66. This shows an example of future FPAAs with hundreds of CABs. As FPAAs scale up
in size, more tiers of routing must be added to the heirarchy. Here, global vertical and horizontal
busses (tier 1) connect clusters of CABs, dubbed megaCABs, together.

small CABs) on a single chip is being fabricated in TSMC 0.35-micron; it covers an

area of approximately 9 mm2. A picture of the top–level layout is shown in Fig. 63,

and more detailed pictures of the small and large CABs are shown in Fig. 64.

7.2 Future FPAAs

Commercially viable FPAAs are forseen that have hundreds, if not thousands,

of CABs based on this same architecture. These designs use a heirarchical routing

structure with more levels than has been shown. An example of a 512 CAB FPAA

is shown in Fig. 66. The CABs are clustered in groups of four with a routing scheme
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Figure 67. In future FPAAs with hundreds of CABs, CABs are clustered together in megaCABs
that contain four to eight CABs. megaCAB–level routing (tier 2 routing) connects the local switch
networks (tier 3 routing) together.
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similar to RASP 2.5. These CAB clusters have been dubbed megaCABs and an

example is shown in Fig. 67. Within each megaCAB, CABs can be varied slightly

to provide more flexibility. In this example, only one of every four CABs contains

a vector–matrix multiplier. The other CABs then have additional transistors and a

signal–by–signal multiplier.

An FPAA with this architecture can synthesize 512–channel subbanding, a 44–

point discrete cosine transform, 256 third–order ladder filters, or many other circuit

combinations. Larger systems can be built as well. As is shown in Section 7.3,

this FPAA can implement a 32–channel auditory feature extraction system, a 128–

channel cochlear model, or a low–power hearing aid algorithm. These examples are

just a sample of the full systems that can be achieved on large–scale FPAAs. In

addition, FPAAs based on this architecture can be effectively used to prototype analog

front–ends for digital systems, broadband processing for high–speed communication

systems (allowing low–speed, baseband A/D converters), real–time image processing,

low–power distributed sensor networks, and data acquisition systems.

7.3 Testbed Applications for Large–Scale FPAAs

To illustrate the viability of large–scale FPAAs, several distinct applications will be

discussed. Their functionality will be shown along with their implementation on

large–scale FPAAs.

7.3.1 Auditory Feature Extraction

Extraction of features from an incoming audio stream is a key component in au-

dio classification and auditory scene analysis systems. The algorithm illustrated in

Fig. 68 has been developed previously and digital implementations exist. However,

for embedded processing environments, this algorithm is computationally intensive.

By implementing most or all of this algorithm in analog hardware, a big savings in

time and power can be achieved.
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Figure 68. This is the block diagram for a digital feature extraction algorithm. Typically, 32–128
channels are needed for this algorithm.
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Figure 69. The vector–matrix multiplication module is used to compute the first–order difference
equation for three of the channels.
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Figure 70. This is the block diagram for the analog feature extraction algorithm as implemented
on an FPAA. Without the DCT block, a 32–channel system can be synthesized on RASP 2.5. For
a 32–channel system, the DCT blocks will require 64 4 x 4 vector–matrix multiplier blocks. The
future FPAA outlined in Section 7.2 has 128 of these blocks and could implement the entire feature
extraction algorithm shown here.

The analog blocks required to implement this function are shown in Fig. 70. As

shown in this figure, the bandpass filter module and time derivative can be combined

into a C4 SOS bandpass filter module. The spatial derivative can be computed with

a first–order difference of the neighboring subband using the vector–matrix multiplier

to compute three subbands (see Fig. 69). Finally, the half–wave rectification and

temporal averaging are achieved with a peak detector programmed to an appropriate

time constant.

The RASP 2.5 FPAA is large enough to implement a 32–channel version of this fea-

ture extraction algorithm with the exception of the discrete cosine transform (DCT).

In this case, the analog/digital boundary would fall between the peak detector and

the DCT as shown by the dashed line in Fig. 70.

To implement the entire algorithm in analog, the future FPAA outlined in Sec-

tion 7.2 would need to be used. With 128 4 x 4 vector–matrix multiplier blocks,
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Figure 71. These generalized block diagrams typify many audio processing functions, including
noise suppression, audio classification, and hearing aids. The various RASP architectures have been
optimized to implement one or both of these system flows.

a 32 x 32 matrix transformation implementing the DCT can be implemented along

with the first–order difference equations needed for each channel.

In addition to the feature extraction algorithm outlined above, a number of differ-

ent audio and speech processing functions can be realized on large–scale FPAAs with

architectures similar to the RASP FPAAs. The generalized block diagrams shown in

Fig. 71 are typical of many audio processing functions, including noise suppression,

audio classification, and hearing aids. The various RASP architectures have been

optimized to implement one or both of these flows.

7.3.2 Neuromorphic Modeling

It is natural to use analog circuits to model neural systems [62]. Models of the basic

neural processes—such as axons, synapses, dendrites, action potentials, and whole

neurons—are often not very large when done in isolation. However, modeling full

neuromorphic systems requires hundreds or thousands of these basic blocks. The

size and functionality of the large–scale FPAAs introduced here will enable the rapid

prototyping of neuromorphic systems, such as networks of neurons, the cochlea, and

more.
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Figure 72. These circuit diagrams illustrate two slight variations of the self–resetting (or integrated–
and–fire) neuron from [62]. Both circuits can be implemented in RASP 2.5; however, the circuit in
part (a) requires one more CAB than the circuit in part (b) because of the six transistors needed.

One basic model of the neuron is Mead’s self–resetting neuron [62]. Two slight

variations of this design are shown in Fig. 72. Both of these circuits can be imple-

mented in RASP 2.5; however, the transistor–only version requires an additional CAB

because of the six transistors needed.

Like the variety of neuron models, a number of different models exist for building

larger neuromorphic systems. As an example, two models of the cochlea are shown

in Fig. 73. Both of these systems can be synthesized with RASP FPAAs. Typically,

these models will be used with 32 channels. The center frequencies of the C4 SOS

modules are spaced logarithmetically through the human hearing range.

Modeling more complex neuromorphic systems often requires adaptability. It has

been shown previously that floating–gate transistors are well–suited to implementing

adaptive systems [20, 46, 51]. An adaptive CAB based on this technology could be

built that would readily fit within the RASP architecture. This ability to combine
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Figure 73. These circuit diagrams illustrate two models of the cochlea. Both of these systems
can be synthesized on the RASP FPAAs. Typically, 32 channels would be used with the center
frequencies of the variations spaced logarithmetically throughout the auditory range.

general–purpose computational elements with blocks that can enable the synthesize of

specific signal processing functions is an important feature of the FPAA architecture

and framework presented in this thesis.

7.4 Future Research

More than just a single device, the FPAA enables a whole new design paradigm. The

FPAA architecture and infrastructure developed here form a design methodology that

can be applied to an ever–widening scope of problems. The FPAA framework intro-

duces programmability, reconfigurability, and reuseability to analog circuit design.

While FPAAs have existed before this thesis, they have not had the size or function-

ality to enable true system–level design, and thus, they have failed to be the enabling

technology that takes rapid prototyping of analog systems into the mainstream.

Approaching FPAA design from the perspective of design methodology—instead

of merely circuit design—has led to a number of different avenues of research. These

research directions are a direct result of this FPAA research and can be broadly
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classified into three areas: enabling technologies, computational logic, and computer–

aided design (CAD) of analog systems.

7.4.1 Enabling Technologies

Developing large–scale FPAAs has created a need for new and improved methods of

programming. The increased size alone mandates that switches must be programmed

quickly or the large device is handicapped by the amount of time required to pro-

gram it. The vast majority of the floating–gate transistors on large–scale FPAAs

are switches, and programming switches does not typically require a high degree of

accuracy. Thus, a separate programming scheme for switches can be optimized for

speed (to the detriment of programming accuracy).

An additional increase in programming speed can be achieved by moving the

programming control logic on–chip. When this is done, the programming logic can

be replicated for each row of the device, and a row–parallel programming scheme can

be implemented. The speed–up that can be realized in this scheme is significant and

is an ongoing research project in the CADSP group.

The architecture of these large–scale FPAAs requires large switch networks. Even

in a routing–hierarchy approach, the local switch interconnects will need to be a

crossbar switch to enable maximum connectivity. As can be seen in the layout pic-

ture in Fig. 63, the switch networks consume a large area. Making these networks

denser would be a large benefit in terms of cost and scalability. Research on the

core floating–gate technology is ongoing. Researchers in the CADSP group are cur-

rently characterizing alternative methods of programming (particularly tunnelling)

floating–gate transistors.

7.4.2 Computational Elements

A number of different CAB designs have been proposed within the CADSP group.

Researchers are currently working on CAB designs that include minor variations to
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(schematic, HDL, etc.)

A/D Partitioner

SynthesisSynthesis

Place & Route

FPGA Programmer

Place & Route

FPAA Programmer

Design Entry

Mixed−Signal Logic Compiler

Mixed−Signal Prototyping Platform

FPGA FPAA

Figure 74. This is a block diagram of the ideal tool flow to enable mixed–signal rapid prototyping.
Here, the CAD toolflow accepts a high–level, mixed–signal system description (i.e., a VHDL-AMS
description or graphical schematic) and then performs an automated partitioning of the system into
an optimal balance of digital and analog circuitry. The resulting analog and digital netlists are then
passed through separate synthesis, place and route, and programming tool flows that are targeted
for the specific devices on the development system.

the RASP CABs, designs optimized for high–speed operation, and designs based on

emerging logic circuits, such as multiple–input translinear elements (MITEs). Some of

these designs will fit directly into the RASP architecture with no significant change to

the routing interconnects or control infrastructure. Other designs, such as the MITE

FPAAs, are new designs that have been developed from the framework introduced

here.

7.4.3 CAD Tool Flow for Analog Systems

When FPAAs are small, manually specifying placement and routing of circuits onto

the FPAAs architecture is not too burdensome. However, as FPAAs increase in size to
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include complex CABs, non–homogeneous meshes of computational logic, and hierar-

chical routing interconnects, manual design becomes impractical or even impossible.

Thus, a CAD tool flow needs to be developed for FPAAs. As shown in Fig. 74, the

ideal CAD tool flow would support a high–level entry methodology such as VHDL and

VHDL-AMS for mixed–signal hardware design specification. The CAD tools would

then automatically partition the system into the optimal balance of digital and analog

hardware and issue separate digital and analog netlists. Each netlist would then pro-

ceed through the synthesis, placement, routing, and programming of the respective

reconfigurable devices (FPGA and FPAA). As outlined in Section 2.4, some work has

already progressed on the analog side. Most of this work is targeted at smaller FPAAs

such as Anadigm’s FPAAs. It has yet to be shown if these algorithms will scale to

the larger FPAAs discussed here. Researchers in the CADSP group have begun to

look at the challenges of placement and routing for large–scale FPAAs and are using

the RASP 2.5 architecture as a testbed target for their software.

7.5 Commercialization

As FPAA research has progressed, academia and industry have shown increased in-

terest in this work. Because of this interest, the FPAA research discussed here is

covered in a pending patent [19]. In particular, GTronix, a start–up company coming

from the Georgia Institute of Technology’s VentureLabs business incubator, has re-

ceived funding to pursue commercialization of an FPAA on the scale of the RASP 2.5.

This effort will result in further development in order to transform the RASP FPAA

architecture from a laboratory testbed into a viable commercial product. It is also

anticipated that by moving the development associated with large–scale VLSI design

into the corporate environment, students and faculty in the CADSP group will be

able to focus on advancing the research.
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7.6 Original Contributions

This thesis has detailed the investigation of a novel, large–scale FPAA that is analo-

gous to current commercial FPGAs in its size, usefulness, and flexibility. The engi-

neering contribution of this work can be summarized as follows:

1. System–level architecture of a floating–gate FPAA: The system–level

architecture of an FPAA based on floating–gate technology has been presented.

A novel, large–scale FPAA architecture has been specified and two testbed

FPAAs based on this design have been fabricated and tested. Using analysis,

simulation, and experimental data, these FPAAs have been shown to be highly

flexible, functional, and generic in nature. The feasibility of large–scale, useful

FPAAs based on this design has been shown.

2. Mixed–signal prototyping platform for signal processing applications:

A mixed–signal prototyping platform has been created. By combining large–

scale FPAAs and FPGAs together into a single system, the first realistically

viable mixed–signal prototyping platform is demonstrated.

3. Roadmap for future FPAAs: This research has laid the foundation of a new

genre of research in reconfigurable analog systems. By showing the viability of

large–scale FPAAs, this effort has renewed interest in the research and develop-

ment of reconfigurable analog systems in both academia and industry. Within

the CADSP group alone, FPAA research has transitioned from a single project

to being a defining thrust of the group. Not only is a core team of researchers

now dedicated to FPAA research, but the design methodologies introduced by

reconfigurable logic have permeated many of the research projects within the

group (see Section 7.4). On the industry side, a number of corporations have

shown an interest in the research presented here, and a start–up company has

been created and funded to commericialize an FPAA based on this work.

106



7.7 Conclusion

Large–scale FPAAs based on floating–gate technologies provide the necessary levels of

programmability and functionality to implement complex signal processing systems.

With orders–of–magnitude savings in power consumption over traditional digital ap-

proaches, this reconfigurable analog technology offers an attractive alternative for

implementing advanced signal processing systems in low–power embedded systems.

The floating–gate transistors are shown to provide a compact switch that exhibits

relatively flat resistance characteristics across the full operating voltage and can be

programmed to be an active circuit element (e.g., variable resistor).

The technologies and architectures explored in this thesis have been demonstrated

in fabricated, testbed FPAAs. Characterization and system–level data have been

experimentally acquired. Systems implemented on these FPAAs have shown that

FPAAs are highly flexible, and individual computational elements have proved to be

programmable across a wide range of frequencies, Q-peaks, bandwidths, and time

constants.

Large–scale FPAAs based on the testbed architectures have been designed and

are currently being fabricated. However, more than just a single design, large–scale

FPAAs enable a whole new design paradigm. The FPAA architecture and infras-

tructure developed here form a design methodology that can be applied to an ever–

widening scope of problems. This FPAA framework brings programmability, recon-

figurability, and reuseability to analog circuit design.
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