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SUMMARY

When computational resources are limited, especially multipliers, distributed arithmetic

(DA) is used in lieu of the typical multiplier-based filtering structures. However, DA is not

well suited for adaptive applications. The bottleneck is updating the memory table. Several

attempts have been done to accelerate updating the memory, but at the expense of additional

memory usage and of convergence speed.

To develop an adaptive DA filter with an uncompromised convergence rate, the memory

table must be fully updated. In this research, an efficient method for fully updating a DA

memory table is proposed. The proposed update method is based on exploiting the temporal

locality of the stored data and subexpression sharing. The proposed update method reduces

the computational workload and requires no additional memory resources. DA using the

proposed update method is called conjugate distributed arithmetic.

Filters can also be constructed from analog components. Often, for lower precision

computations, analog circuits use less power and less chip area than their digital counter-

parts. However, digital components are often used because of their ease of reprogramma-

bility. Achieving such reprogrammability in analog is possible, but at the expense of addi-

tional chip area.

A reprogrammable mixed-signal DA finite impulse response (FIR) filter is proposed

to address the issues with reprogrammable analog FIR filters that are constructing com-

pact reprogrammable filtering structures, non-symmetric and imprecise filter coefficients,

inconsistent sampling of the input data, and input sample data corruption. These issues are

successfully addressed using distributed arithmetic, digital registers, and epots.

Also, a mixed-signal DA second-order section (SOS), which is used as the building

block for higher order infinite impulse response filters, was proposed. The type of issues

with an analog SOS filter are similar to those of an analog FIR filter, which are the lack

xii



of a compact reprogrammable filtering structure, the imprecise filter coefficients, the in-

consistent sampling of the data, and the corruption of the data samples. These issues are

successfully addressed using distributed arithmetic and digital registers.

xiii



CHAPTER 1

INTRODUCTION

Distributed arithmetic (DA) is commonly used for signal processing algorithms where

computing the inner product of two vectors comprises most of the computational workload.

This type of computing profile describes a large portion of signal processing algorithms, so

the potential usage of distributed arithmetic is tremendous.

The inner product is commonly computed using multipliers and adders. When com-

puted sequentially, the multiplication of two B-bit numbers requires from B/2 to B addi-

tions, and is time intensive. Alternatively, the multiplication can be computed in parallel

using B/2 to B adders, but is area intensive [1, 2]. Whether a K-tap filter is computed

serially or in parallel, it requires at least B/2 additions per multiplication plus the K − 1

additions for summing the products together. In the best case scenario, K · (B + 2)/2 − 1

additions are needed for a K-tap filter using multipliers and adders.

A competitive alternative to using a multiplier is distributed arithmetic. It compresses

the computation of a K-tap filter from K multiplications and K−1 additions into a memory

table and generates a result in B-bit time using B − 1 additions. DA significantly reduces

the number of additions needed for filtering [3, 4]. This reduction is particularly noticeable

for filters with high bit precision. This reduction in the computational workload is a result

of storing the pre-computed partial sums of the filter coefficients in the memory table [1].

When compared with other alternatives, distributed arithmetic requires fewer arithmetic

computing resources and no multipliers. This aspect of distributed arithmetic is a favorable

one for computing environments with limited computational resources, especially multipli-

ers. These type of computing environments can be found on older field-programmable gate

arrays (FPGAs) and low-end, low-cost FPGAs. By using distributed arithmetic, these type

of devices can be used for low latency, area constrained, high-order filters. Implementing

such a filter using a multiplier based approach would be difficult.
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1.1 Adaptive Filters using Distributed Arithmetic

Another important signal processing area is adaptive filtering. Adaptive filtering is exten-

sively used in several signal processing applications including acoustic echo cancellation,

signal de-noising, sonar signal processing, clutter rejection in radars, and channel equaliza-

tion for communication and networking systems [5, 6]. For adaptive filtering applications,

distributed arithmetic has not worked well for the following issues. First, the typical com-

putational flow of distributed arithmetic for adaptive filtering requires a significant increase

in the computational workload over the non-adaptive case and a noticeable increase in the

computational time when constrained with limited computing resources. These additional

resources are needed for updating the contents of the memory table associated with dis-

tributed arithmetic. For these applications, one of the typical advantages of distributed

arithmetic that is the low computing requirement is significantly diminished or eliminated.

For instance in a brute-force implementation, this straight forward updating method would

take (K/2 − 1)2K + 1 additions for a K-tap FIR filter. When contrasted with the number of

additions used for just filtering the data, this type of update method uses a factor of order

K ·2(K−1)/B more additions, where B is the bit precision of the input data for a conventional

distributed arithmetic filter. For example when K = 16 and B = 8, a factor of order 216 more

additions are required to update the memory table than to compute the output sample. Sev-

eral attempts have been done to accelerate the process of updating the memory. Although

these approaches do reduce the amount of processing necessary to update the memory, this

reduction is gained at the expense of additional memory usage and of convergence speed.

To address these issues, a new type of adaptive distributed arithmetic filter is proposed.

The computational workload was significantly reduced by modifying the computational

flow and utilizing an efficient method for updating the memory table contents without

compromising the convergence speed or requiring additional memory resources. Details

of these modifications for the proposed filter are provided in Section 3.1.

2



1.2 Reducing the Memory Usage of Adaptive Distributed Arithmetic
Filters

Another aspect of distributed arithmetic that may dissuade one from using it is its relatively

high memory usage. This issue is equally relevant to both non-adaptive and adaptive ap-

plications. Inherently, distributed arithmetic requires more memory than other alternatives;

therefore, the memory ratio comparing distributed arithmetic with an alternative is always

greater than one, and is typically significantly greater than one. For example, a 128-tap DA

FIR filter without any memory optimizations will require a prohibitively large 2128 entries

in the memory table.

To mitigate this issue for a particular type of adaptive DA filter, sliding-block distributed

arithmetic was modified to significantly reduce the memory usage. This reduction was

achieved by encoding the memory table contents. With additional modifications to the

computational flow, the computing workload is reduced as well. Details of this modified

sliding-block distributed arithmetic are given in Section 3.2.

1.3 Applications of Distributed Arithmetic Outside the Digital Do-
main: Mixed-Signal DA Filters

The filters described so far have used digital components. Filters can also be implemented

using analog components. Typically, analog circuits use less power and less chip area than

their digital counterparts for low precision computations. However, even with these advan-

tages, the digital components are often preferred over the analog ones because of the ease

of reprogrammability of the digital systems. A common method to achieve reprogramma-

bility for analog systems is to utilize a bank of components to emulate the variability of

key components such resistors or capacitors. A straight forward example of constructing a

variable capacitor is to use a bank of capacitors whose size is scaled by factors of two and

connected in parallel through a bank of switches. This type of variable component is re-

programmable using digital words. However, this type of structure dramatically increases

the chip area consumed.

3



When analog circuits are used to implement filters with wide linear phase, which is

important for applications such as image processing, a couple typical approaches exist for

constructing such a filter. Each of these approaches has its own set of issues.

One common approach is to use traditional analog techniques using a combination of

resistors, capacitors, transistors, and/or amplifiers. Typically, designing such filters with

these components is time consuming, and its frequency response is not reprogrammable.

As mentioned earlier, the filter can be redesigned with reprogrammability in mind; how-

ever, the chip area consumed increases dramatically and typically eliminates the benefit

of low chip area when compared with their digital counterparts. This type of approach is

commonly found for both continuous-time and discrete-time filters.

Filters with wide linear phase can also be implemented using a finite impulse response

(FIR) filtering structures. The only requirement for making an FIR filter with linear phase

is to ensure that the filter coefficients are symmetric. The type of symmetry, either even or

odd, does not matter. When using digital components, this symmetry is easily achieved. In

the analog domain, to achieve such symmetry is more difficult. The key point to achieving

symmetry is making sure the filter coefficients are precise. If the filter coefficients are

not precise, then the linear phase of the analog FIR filter is affected. Also if the filter

coefficients are too imprecise, then the frequency response of the filter is affected. The

issues that hamper symmetry and filter coefficient precision are process variations such

as device mismatch. These issues can be overcome by using additional analog design

techniques; however, these techniques come at the expense of consuming additional chip

area. If reprogrammability of the filter coefficients is required, then these issues are further

compounded, and the chip area consumed is increased even more when compared with a

non-reprogrammable FIR filter.

Another issue with implementing an analog FIR filter is sampling and storing the input

data especially for high-order filters. When using continuous-time components, two com-

mon ways exist to generate the appropriately delayed input samples. One approach is to use

4



a cascade of identical all-pass filters with a constant group delay appropriate for the desired

sampling rate in the frequency range of interest. When using such a filtering structure, a

couple problems need to be overcome. The first issue is related to the process variations

such as the device mismatch. As stated earlier, this issue can be overcome by using addi-

tional analog design techniques at the expense of additional chip area. If the all-pass filter

is not designed to tolerate process variations, then the group delay in the desired frequency

range may not be constant, the group delay for each all-pass filter is different, and/or the

group delay is not appropriate for the desired sampling rate. This lack of tolerance results

is inconsistent sampling of the input data. The second issue is the noise that accumulates

as the input signal is cascaded from one all-pass filter to the next. After cascading through

a few all-pass filters, the input signal will become unusable. This effect limits the highest

achievable order for an FIR filter. In turn, this limits the frequency roll-off and limits the

variety of frequency responses that is obtainable.

The other approach when using continuous-time components for sampling and storing

the input data for an analog FIR filter is to use a bank of all-pass filters with a group delay

scaled according to the appropriate multiple of the sample period for the desired sampling

rate in the frequency range of interest. This approach also is affected by issues related to

process variations. These issues may result in the group delay in the desired frequency

range to be not constant and/or to be not scaled accordingly to the appropriate multiple of

the sample period. In other words, these issues result in an inconsistent sampling of the

input data. The other downside of this approach is that each all-pass filter is not identical;

therefore, this approach requires more design effort than the first one. For this approach,

each all-pass filter must be designed for a different amount of group delay. In the first case,

only one type of all-pass filter must be designed.

Discrete-time analog components are also used to sample and to store the input data for

analog FIR filters. The typical way to sample and to store the input data using discrete-time

components is to use a sample and hold circuit. By using these type of circuits, the issue
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of inconsistently sampling the input data is minimized. These circuits can be configured

a couple different ways. The first way is a cascade of sample and hold circuits connected

to the same sample clock. As in the continuous-time case when using a cascade of all-

pass filters, this approach has a significant issue with noise accumulation, and the input

signal becomes unusable after being cascaded through a few sample and hold circuits. This

accumulation of noise limits the highest achievable order for an FIR filter to a few filter

taps.

Instead of connecting the sample and hold circuits in a cascaded fashion, another way

is to connect each sample and hold circuit to the input signal where only one circuit is

sampling the input signal every sample period and to connect the appropriate input samples

with the appropriate filter coefficients. This connection of the input sample with the filter

coefficient can be done in two ways. The first way is to connect the appropriate input

sample to the appropriate filter coefficient through a switching matrix where each sample

and hold circuit can be connected to each filter coefficient. This approach eliminates the

noise accumulation issue when using a cascaded approach. The principle issue with this

approach is that the switching matrix requires the filter length squared number of switches.

In other words for a K-tap FIR filter, K2 number of switches is needed for the switching

matrix. The other way to connect the input sample to the filter coefficient is to rotate

the filter coefficients to the appropriate input samples as if using a circular buffer. This

approach eliminates the switching matrix; however, this approach does not eliminate the

noise accumulation issue. Instead of accumulating noise in the input samples, the noise is

accumulated in the filter coefficients.

In the proposed reprogrammable mixed-signal distributed arithmetic FIR filter, the typ-

ical issues associated with reprogrammable analog FIR filters, which are the lack of a

compact reprogrammable filtering structure, the non-symmetric and imprecise filter coeffi-

cients, the inconsistent sampling of the input data, and the corruption of the input samples,

are addressed. These issues are addressed using a combination of distributed arithmetic,
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digital storage elements, and epots, which are compact, reprogrammable, and precise volt-

age references. Since the use of distributed arithmetic has not been done before using

a combination of analog and digital components for a mixed-signal FIR filter, potential

error sources due to using analog components are analyzed. Details of the proposed repro-

grammable mixed-signal distributed arithmetic FIR filter and the analysis of the potential

error sources are located in Chapter 4.

For applications that require a steep roll-off in frequency response, infinite impulse re-

sponse (IIR) filters are better suited than finite impulse response (FIR) filters. Typically,

IIR filters can be designed with frequency roll-off higher than FIR filters of the same order.

Typically, high order IIR filters are constructed from second-order sections (SOSs). The

construction of an analog IIR filter is similar to that of an analog FIR filter, and an analog

IIR filter has issues similar to that of an FIR one, which are the lack of a compact repro-

grammable filtering structure, the imprecise filter coefficients, the inconsistent sampling of

the input and output data, and the corruption of the input and output samples. The key

difference between the two is that a feedback path is present in addition to the feedforward

path, which is also present in an FIR filter. The feedback path is constructed in a similar

manner to the feedforward path except that it uses the output samples instead of the input

samples.

In the proposed reprogrammable mixed-signal distributed arithmetic second-order sec-

tion filter, the typical issues associated with reprogrammable analog IIR filters, which are

the lack of a compact reprogrammable filtering structure, the imprecise feedback and feed-

forward filter coefficients, the inconsistent sampling of the input and output data, and the

corruption of the input and output samples, are addressed. These issues are addressed us-

ing a combination of distributed arithmetic and digital storage elements. Since the use of

distributed arithmetic has not been done before using a combination of analog and digital

components for a mixed-signal IIR filter, potential error sources due to using analog com-

ponents are analyzed. Details of the proposed reprogrammable mixed-signal distributed
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arithmetic second-order section filter and the analysis of the potential error sources are

located in Chapter 5.

1.4 Contributions

In this research, contributions are made in the following fields. The first one is in the

development of an adaptive filter using distributed arithmetic. The issues addressed by this

research are the lack of an efficient method to fully update the memory table of a distributed

arithmetic adaptive filter, the usage of memory resources beyond that of the non-adaptive

case, and the compromised convergence rate. The following contributions were made to

address these issues and to develop an adaptive distributed arithmetic filter with an efficient

method to fully update the memory table without using additional memory resources and

with uncompromised convergence performance.

1. A new method for fully updating the memory table was proposed. By fully updat-

ing the memory table, the convergence performance of the adaptive filter remains

unaffected; therefore, the proposed update method can be used to construct adaptive

filtering structures using distributed arithmetic without a compromised convergence

rate.

2. A new method for efficiently updating the entire memory table was proposed. The

proposed update method reduced the computational workload for updating the mem-

ory table of a k-tap filter by about k/2 − 1 over brute-force.

3. By using a filter coefficient driven distributed arithmetic filtering structure, the addi-

tional memory resources required by most other types of adaptive distributed arith-

metic filtering structures, which use an input driven memory table that is composed

of the combinations of its filter coefficients, are eliminated.
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In this research, the proposed memory update method is combined with a filter coefficient

driven distributed arithmetic filtering structure. This combination is called conjugate dis-

tributed arithmetic (CDA).

After a through literature review of adaptive distributed arithmetic filtering structures,

only one other type of adaptive DA that is called sliding-block distributed arithmetic (SBDA)

also addresses the issues outlined above with an adaptive DA filter. Although CDA is not

the only adaptive distributed arithmetic filtering structure that addresses these issues, CDA

is advantageous in a variety of filter configurations.

1. Among the adaptive distributed arithmetic filters that fully updates its memory ta-

bles, CDA uses the least amount of memory. Its memory usage is only matched by

the brute-force method; however, CDA reduces the number of operations required by

about k/2−1 over brute force for a k-tap filter. Recall, only adaptive distributed arith-

metic filters that fully updates its memory tables is able to maintain the convergence

speed of the LMS algorithm.

2. CDA uses less memory than SBDA especially if the filter is broken up into few

subunits. This advantage is useful when coded on a system with limited memory.

3. CDA uses fewer additions than SBDA when the bit precision of the filter coefficients

in SBDA is greater than the number of additional memory table entries that need

to be updated in CDA. Typically, this occurs when the coefficient bit precision, the

number of subunits, the depth of the memory tables, or a combination of these three

are low. A couple benefits of fewer additions are boosted sampling rate, or lower

power usage.

In addition to CDA and SBDA, an alternative adaptive DA filter structure called SBDA-

OBC was proposed and developed. Its memory update method is a modification of the

one used in SBDA, and it has lower memory usage and fewer additions for most filter

configurations over SBDA. The principle motivations for modifying SBDA are to encode
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the memory using OBC such that the memory usage is reduced almost in half and to modify

SBDA in such a way that when the memory is encoding using OBC that the computational

workload for updating the memory table is reduced. The following are the observed savings

of SBDA-OBC.

1. SBDA-OBC has the lowest memory requirements of any current mechanization for a

coefficient driven, memory-based DA adaptive FIR filter. Specifically, SBDA-OBC

uses about 50% less memory than SBDA when the filter length of the subunits is

long.

2. SBDA-OBC has the fewest number of additions for a large number of filtering con-

figurations among the current mechanizations for a coefficient driven, memory-based

DA adaptive FIR filter. Specifically, SBDA-OBC needs about 50% less additions

than SBDA when the filter length of the subunits is long.

Contributions were also made in the field of reprogrammable mixed-signal FIR filter

design. The issues addressed by this research are the lack of a compact reprogrammable

filtering structure, the non-symmetric and imprecise filter coefficients, the inconsistent sam-

pling of the input data, and the corruption of the input samples. The following contributions

were made to address these issues.

1. A reprogrammable mixed-signal FIR filter was proposed and developed to address

the issues of the lack of a compact reprogrammable filtering structure, the non-

symmetric and imprecise filter coefficients, the inconsistent sampling of the input

data, and the corruption of the input samples.

2. Distributed arithmetic and epots were used to address the issue of a lack of a compact

reprogrammable filtering structure for a reprogrammable mixed-signal FIR filter. A

combination of distributed arithmetic and epots were used to construct a compact

reprogrammable mixed-signal FIR filter.
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3. epots were used to address the issue of non-symmetric and imprecise filter coeffi-

cients for a reprogrammable mixed-signal FIR filter. epots were used to precisely

reprogram the filter coefficients. These filter coefficients can be programmed with

such precision that a natural by-product is high filter coefficient symmetry.

4. Digital registers were used to address the issues of inconsistent input data sampling

and of input sample data corruption for a reprogrammable mixed-signal FIR filter.

The digital registers were used to sample the input data consistently and to eliminate

input data corruption. Because the digital registers can be cascaded without concern

for data corruption, this ability to cascade many input digital registers together allows

for the construct of a high order FIR filter using the proposed reprogrammable mixed-

signal FIR filtering structure.

5. An analysis of potential error sources generated by using analog components was per-

formed to determine the effects that these analog components have on the proposed

reprogrammable mixed-signal FIR filter. Deduced from this analysis, a guideline

was generated of where to focus the design effort for the proposed reprogrammable

mixed-signal FIR filter. The guideline is to use most of the design effort on mini-

mizing the variance of random errors sources and maximizing the precision of the

amplifiers used.

Finally, contributions were made in the field of reprogrammable mixed-signal second-

order section design. The issues addressed by this research are the lack of a compact repro-

grammable filtering structure, the imprecise feedback and feedforward filter coefficients,

the inconsistent sampling of the input and output data, and the corruption of the input and

output samples. The following contributions were made to address these issues.

1. A reprogrammable mixed-signal second-order section was proposed and developed

to address the issues of the lack of a compact reprogrammable filtering structure, the
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imprecise feedback and feedforward filter coefficients, the inconsistent sampling of

the input and output data, and the corruption of the input and output samples.

2. Distributed arithmetic and digital registers were used to address the issue of a lack

of a compact reprogrammable filtering structure for a reprogrammable mixed-signal

second-order section. A combination of distributed arithmetic and digital registers

were used to construct a compact reprogrammable mixed-signal second-order sec-

tion.

3. Digital registers were used to address the issue of imprecise feedback and feedfor-

ward filter coefficients for a reprogrammable mixed-signal second-order section. The

digital registers were used to precisely reprogram the filter coefficients.

4. Independently clocked sample and hold circuits and a circular buffer of digital regis-

ters were used to address the issues of inconsistent sampling of the input and output

data and of the corruption of the input and output samples for a reprogrammable

mixed-signal second-order section. The independently clocked sample and hold cir-

cuits and the circular buffer of digital registers were used to consistently sample the

input and output data and to minimize the corruption of the input and output samples.

5. An analysis of potential error sources generated by using analog components was per-

formed to determine the effects that these analog components have on the proposed

reprogrammable mixed-signal second-order section. Deduced from this analysis, a

guideline was generated of where to focus the design effort for the proposed repro-

grammable mixed-signal second-order section. The guideline is to use most of the

design effort on minimizing the variance of random errors sources and maximizing

the precision of the amplifiers used.
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CHAPTER 2

BACKGROUND MATERIAL

In the first section of this chapter, a review of distributed arithmetic for FIR filters is

presented. This section includes material on common optimizations used with distributed

arithmetic. These optimizations are commonly applied to adaptive distributed arithmetic

filters.

The second section is a review of distributed arithmetic for adaptive applications, in

particular using the LMS algorithm. This section focuses on the two different approaches

for updating the memory tables used for distributed arithmetic, which are to partially update

the memory tables or to completely update the memory tables. This section discusses the

trade-offs between the two approaches in terms of computational workload and adaptive

convergence speed.

2.1 Review of Distributed Arithmetic FIR Filters

One way to take advantage that the density of memory elements is growing faster than of

computational logic elements is to use an implementation that utilizes memory for more

than storage. One such mechanization is called distributed arithmetic (DA). In following

sections, a brief background and common hardware optimizations of DA is provided.

2.1.1 Distributed Arithmetic

Distributed arithmetic (DA) was first introduced by Croisier et al. [7] and further developed

by Peled and Lui [3]. DA is a multiplier-less implementation for computing the inner

product of a pair of vectors [8], a common computation used in digital signal processing. It

is well suited to implementing high throughput FIR filters and signal transformations such

as discrete cosine transforms or fast fourier transforms. DA is a bit-serial computation that

forms an inner product of a pair of vectors in a few steps by storing all possible combination

sums of weights in a memory table. It is assumed that the inputs to the filter are represented
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as B-bit 2’s complement binary numbers with only the sign bit to the left of the radix point.

A discrete-time linear finite impulse response filter generates the output y[n] as a sum of

delayed and scaled input samples x[n]. In other words,

y[n] =

K−1∑

k=0

wkx[n − k]. (2.1)

Let the signal samples to the filter be represented as B-bit 2’s complement binary numbers,

x[n − i] = −bi0 +

B−1∑

l=1

bil2−l, i = 0, . . . ,K − 1, (2.2)

where bil is the lth bit in the 2’s complement representation of x[n − i]. Substituting (2.2)

into (2.1) and swapping the order of the summations yields

y[n] = −


K−1∑

i=0

bi0wi

 +

B−1∑

l=1


K−1∑

i=0

bilwi

 2−l. (2.3)

For a given set of wi (i = 0, . . . ,K − 1), the terms in the square braces may take only one

of 2K possible values, which may be stored in a memory table, denoted as the DA filtering

memory table (DA-F-MEM). The entry in the DA-F-MEM addressed by r, is given by

DA-F-MEM(r) =

K−1∑

i=0

c(r)
i wi, r = 0, . . . , 2K − 1, (2.4)

where c(r)
i is the ith bit in the K-bit representation of the address r. In other words,

r =

K−1∑

i=0

c(r)
i 2i. (2.5)

For each l, l = 0, . . . , B − 1, the term in the square braces in (2.3) is essentially the entry in

the DA-F-MEM whose address is
∑K−1

i=0 bil2i.

A 4-tap (K = 4) implementation of the DA FIR filter is shown in Figure 2.1. The DA-

F-MEM contains all 16 possible combination sums of the filter weights w0,w1,w2, and,w3.

The bank of shift registers in Figure 2.1 stores 4 consecutive input samples (x[n − i], i =

0, . . . , 3). The concatenation of rightmost bits of the shift registers becomes the address of

the memory table. The shift register is shifted right at every clock cycle. The corresponding

memory table entries are also shifted and accumulated B consecutive times to generate the
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output y[n] where B is the precision of the input data. The sign bit control is used to change

the addition to subtraction for the sign bits which are included in the first expression square

brackets in Eq. (2.3). In addition, computing the filtering operation by utiliziing the DA

filter can be done in B clock cycles regardless of the size of the filter, K. Thus, obtaining a

high throughput rate using the DA implementation, especially if K � B, is possible. Also

due to the regular structure of DA, the logic complexity is low. A comprehensive tutorial

review of DA linear filters is given in [4].

x[n]

x[n-1]

x[n-2]

x[n-3]

a3  a2  a1  a0           data
0    0    0    0  0
0    0    0    1   w0
0    0    1    0    w1 
0    0    1    1 w0+w1
0    1    0    0      w2
0    1    0    1      w0+w2
0    1    1    0      w1+w2
0    1    1    1      w0+w1+w2
1    0    0    0 w3
1    0    0    1      w0+w3
1    0    1    0      w1+w3
1    0    1    1     w0+w1+w3
1    1    0    0    w2+w3
1    1    0    1    w0+w2+w3
1    1    1    0    w1+w2+w3  
1    1    1    1    w0+w1+w2+w3

a0

a1

a2

a3

1

1

1

1

24 x B  DA LUT

Accumulator

Sign control

y[n]

input signal

2-1

Figure 2.1. Block diagram of DA implementation of a 4-tap (K = 4) FIR filter. Each coefficient has B
bits of precision (ex. B=16).

This speed advantage comes at a cost. First, distributed arithmetic is not well suited

for adaptive filtering applications. When used for such applications, updating the asso-

ciated memory tables with their appropriate values using brute-force methods utilizes a

significant amount of additional hardware and considerably depreciates the throughput of

the adaptive filter to the point where using distributed arithmetic has no advantage versus

typical hardware implementations. Several past attempts have been made to implement

adaptive filters using DA [9, 10], but the approximations that are used to modify standard
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adaptation algorithms may not be suitable for many practical applications.

The second disadvantage is its high memory usage. By using some techniques pre-

sented in a distributed arithmetic tutorial paper by White [4], this problem can be mit-

igated to a significant extent. But even using these methods, the memory usage is still

higher when compared to conventional implementations which may prevent the usage of

distributed arithmetic in certain applications such as FIR filtering.

2.1.2 Common Optimizations

Even in its most fundamental implementations, DA utilizes an unreasonable amount of

memory for high order filters. In this section, two common optimizations are presented

that mitigates and reduces the amount of memory to within reasonable limits. The first

optimization reduces the memory by splitting the filter up into smaller base filters. The

second one reduces the memory by encoding the contents in offset binary coding (OBC).

These optimizations are described in further detail in the sections below.

2.1.2.1 DA Filter Design for Large Filter Sizes

As the filter size increases, the memory requirements of the implementation described in

the previous section grow exponentially. For example, a 128-tap DA FIR filter will use

a prohibitively large 2128 entries in the DA-F-MEM. This problem may be alleviated by

breaking up the filter into smaller base DA filtering units that utilize tractable memory

sizes and then summing up the outputs of these units.

The summation in the square braces in Eq. (2.3) may be split so that K-tap filter is

divided into m smaller filters each having k-tap DA base units (K = m × k). Here it is

assumed that K is not prime. Thus, Eq. (2.3) can be written as

y[n] = −


m−1∑

j=0


( j+1)k−1∑

i= jk

bi0wi


 +

B−1∑

l=1


m−1∑

j=0


( j+1)k−1∑

i= jk

bilwi


 2−l (2.6)

The terms in parentheses in Eq. (2.6) may be implemented using m DA base units, each

implementing the expression in square brackets. In Figure 2.2, the implementation of a

4-tap FIR filter based on Eq. (2.6), for m = 2 and k = 2 is shown.
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a0

a1

2−1

Accumulator+/−

sign control

y[n]

w0
w1

w1 w0+

0

a1

a0

w2

w3
w3 w2+

a1 a0

a1 a0

x[n]

x[n−1]

+

Input Signal

0
1

1
0

0
0
1
1

x[n−2]

x[n−3]

0
1

1
0

0
0
1
1

0

data

data

Figure 2.2. Implementation of 4-tap DA FIR filter using m = 2 and k = 2.

The total memory requirement for implementation of Eq. (2.6) is m × 2k memory ele-

ments. The total number of clock cycles used for this implementation will be B+dlog2(m)e;
the additional second term is the number of clock cycles utilized to implement an adder tree

to calculate the sums of the units. Thus, the decrease in throughput of this implementation

is marginal. For instance if K = 128, a full memory table implementation would use 2128

memory elements. Instead, a designer can choose k = 4 and m = 32 to implement a filter

with only 512 memory elements. The number of clock cycles utilized for this implemen-

tation would be 21 clock cycles. In comparison, the single memory table implementation

would use 16 clock cycles.

2.1.2.2 Distributed Arithmetic using Offset Binary Coding

Offset binary coding can be used to halve the size of the memory tables in DA [4]. The

derivation for OBC begins with writing the input, x[n − i], as follows.

x[n − i] =
1
2
{x[n − i] − (−x[n − i])}, i = 0, . . . ,K − 1 (2.7)
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Next, xi and −xi are written in two’s complement notation as shown in Eq. (2.8) and

Eq. (2.9) respectively and substituted back into Eq. (2.7) to yield Eq. (2.10).

x[n − i] = −bi0 +

B−1∑

l=1

bil2−l (2.8)

− x[n − i] = −b̄i0 +

B−1∑

l=1

b̄il2−l + 2−(B−1) (2.9)

x[n − i] =
1
2

−(bi0 − b̄i0) +

B−l∑

l=1

(bil − b̄il)2−l − 2−(B−1)

 (2.10)

Eq. (2.10) can be rewritten as Eq. (2.11) where the variable, cil, is defined as bil − b̄il. This

change of variables translates bil = 0 to a subtraction of h[i]
2 and translates bil = 1 to an

addition of h[i]
2 where previously bil = 0 was an addition of zero and bil = 1 was an addition

of h[i].

x[n − i] =
1
2

−ci0 +

B−1∑

l=1

cil2−l − 2−(B−1)

 (2.11)

Now with x[n− i] written in OBC notation, its incorporation into the FIR filtering equation

is detailed below in Eq. (2.14) where Q(bl) =
∑K−1

i=0
h[i]
2 cil and Q(0) =

∑K−1
i=0

−h[i]
2 .

y[n] =

K−1∑

i=0

h[i]x[n − i] (2.12)

y[n] =
1
2

K−1∑

i=0

h[i]

−ci0 +

B−l∑

l=1

cil2−l − 2−(B−1)

 (2.13)

y[n] = −Q(b0) +

B−1∑

l=1

Q(bl)2−l + 2−(B−1)Q(0) (2.14)

The next step is to use Eq. (2.14) and to identify what hardware maps to each term. As

a preview to this mapping, a block diagram of the hardware implementation is shown in

Figure 2.3. First, the B-bit input samples needs to be serialized to format them for usage

with DA. This function is performed by the parallel input, serial output (PISO) units. They

convert the K input samples into K-bit streams where the bit bil is associated with the lth bit

of the bit stream for x[n − i]. These bit streams are outputted from the LSB, l = 0, first to

the MSB, l = B− 1, last. Then, these bil bits are used to form the address, bl that is equal to
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16-Word ROM

/

/

/

/x[n-3]

x[n-2]

x[n-1]

x[n] PISO

PISO

PISO

PISO

/

/

/

/

Ts

1

1

1

1B

B

B

B

±

+

Initial

Condition

Q(0)

y[n]

Reset

Reset
A/S

ROM Address
a0 a1 a2 a3

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

16-Word
ROM Contents, Q

½(�h[0] � h[1] � h[2] � h[3]) = Q(0)
½(�h[0] � h[1] � h[2] + h[3]) = Q(1)
½(�h[0] � h[1] + h[2] � h[3]) = Q(2)
½(�h[0] � h[1] + h[2] + h[3]) = Q(3)
½(�h[0] + h[1] � h[2] � h[3]) = Q(4)
½(�h[0] + h[1] � h[2] + h[3]) = Q(5)
½(�h[0] + h[1] + h[2] � h[3]) = Q(6)
½(�h[0] + h[1] + h[2] + h[3]) = Q(7)

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

½(h[0] � h[1] � h[2] � h[3]) = Q(8)
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Figure 2.3. A block diagram of an input driven DA FIR filter using OBC.

∑K−1
i=0 bil2i, for a memory that stores all the partial sums of Q(bl). Every possible value of

Q(bl) is stored in a 2K entry memory. For initialization of the filter, the switches are set to

position 1. These switches are controlled by the Reset signal that is set to high at this time.

With the present setting of the Reset signal, the output of the memory is added with the

initial condition. This addition correlates with the term 2−(B−1)Q(0), which is to add Q(0)

with the partial product of the LSB, in the equation. After the first word of data is outputted,

the Reset signal goes low, and the switches move to position 2. Since the filter begins with

the LSB, the Ts bit or the sign bit is set to “0”. Now, the output of the memory is added

with one half of the previous summation. This feedback loop corresponds to the summation

term,
∑B−1

l=1 Q(bl)2−l. The filter continues operating in this manner until the MSB. At this

time, the sign bit is set high and the output of the memory is subtracted from the previous

summation. This operation correlates to the term −Q(b0). Finally to output the completed

computation of y[n], the Reset signal is set high, and the switches are set to position 1.

The memory usage can be reduced by a factor of two if one observes that the upper half

of the ROM table in Figure 2.3 is a mirror image of the lower half. By using only the upper
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half of the memory to generate the output, this restriction implies that only the address bits

a1 through aK−1 are used and that a0 is equal to “0”. With a0 always equal to “0”, a problem

arises on how to add values where b0l = “1”, which implies that a positive h[0]
2 is included in

the partial product for the lth bit. A simple solution to generating the partial products where

b0l = “1” is to subtract the output from the ROM when Ts = “0” and to add when Ts = “1”.

However when b0l = “0”, the usage of the sign bit remains unchanged, which is that the

output of the ROM is added when Ts = “0” and that the output of the ROM is subtracted

when Ts = “1”. To incorporate this functionally into the hardware, the control bit A/S is

now the product of exclusive ORing the b0l bit and the Ts bit together where previously the

A/S bit was equal to the sign bit. An unfortunate byproduct of this modification though

is the unintentional conversion of the addition of the partial product of the lth bit for bits

b1l through b(K−1)l to a subtraction when b0l = “1”. To rectify this problem, the b1l through

b(K−1)l bits are exclusive ORed with b0l. Now, the filter will generate the proper output using

only half of the memory that was previously needed. Other than the K additional exclusive

OR gates, the operation of the filter remains the same as before. A block diagram of the

hardware implementation is shown in Figure 2.4.

The application of OBC to input driven DA for non-adaptive FIR filters is of tremendous

benefit. This trade-off of reduced memory at the expense of slightly more hardware is

worthwhile and is often taken. However for adaptive applications where the contents of

the DA memory tables are changing, the benefit of OBC is greatly reduced because of the

significant amount of hardware required to update the tables.

2.2 Review of Adaptive Distributed Arithmetic Filters

Although DA is well suited for non-adaptive filtering applications, DA is very difficult and

burdensome to implement for adaptive purposes. The key issue with using DA for adaptive

filters is how to efficiently update the contents of the memory tables, which are typically
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Figure 2.4. A block diagram of an input driven DA FIR filter using OBC with reduced memory usage.
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loaded with the partial sums of the filter weights. These update methods for adaptive DA-

based filters can be divided into two categories. The first is where the memory table is

partially updated, and the second is where the memory table is fully updated. A brief

literature review of implementations for both categories is given below.

2.2.1 Partially Updated DA Filters

Rather than updating each entry of a memory table, some adaptive DA filters only update a

few entries per sample period [9-11]. The advantage of this approach is that it reduces the

computational workload. However, this computational efficiency comes at the expense of

convergence speed.

To begin the mathematical derivation of how to create a feasible partially updated dis-

tributed arithmetic adaptive filter, the ith input sample, x[n − i], can be expressed as a

summation as shown in Eq. (2.15).

x[n − i] =

B∑

l=1

b(n−i)l2−l, i = 0, . . . ,K − 1. (2.15)

Although this notation is constant with the earlier one used in previous sections, the usage

of vectors and matrices in place of summations will make mathematical manipulation in

this case easier. The input sample x[n− i] can be expressed as the product of two vectors as

x[n − i] = B(n−i) · TT . (2.16)

where B(n−i) = {b(n−i)1 b(n−i)2 . . . b(n−i)l . . . b(n−i)B} and T = {2−1 2−2 . . . 2−l . . . 2−B}. B(n−i)

is the offset binary encoded bit-wise representation of the ith input sample x[n − i], and T

is the binary scaling vector. The binary representation, B(n−i), of the input sample x[n − i]

for i = 0, 1, ...,K − 1 a form of offset binary coding where a “1” is equal to 1 and where

a “0” is equal to -1. Note, this form of offset binary coding is different than the one used

in Section 2.1.2.2 and in Section 3.2. For those other cases, a form of offset binary coding

was used for a two’s complement binary system and not for an unsigned magnitude one.
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For convenience, the FIR filtering equation in summation form is repeated below as

y[n] =

K−1∑

i=0

wi[n]x[n − i], (2.17)

where wi[n] is the ith filter weight and x[n − i] is the ith input sample. Eq. (2.17) can be

vectorized into

y[n] = Wn · XT
n (2.18)

where Wn = {w0[n] w1[n] . . . wi[n] . . . wK−1[n]} and Xn = {x[n] x[n − 1] . . . x[n −
i] . . . x[n − (K − 1)]}. Wn is the vector of filter weights, and Xn is the vector of input

samples. By substituting Eq. (2.16) into Eq. (2.18), Xn is also equal to

{BnTT B(n−1)TT . . . B(n−i)TT . . . B(n−(K−1))TT },

which can be rewritten as T · {BT
n BT

(n−1) . . . BT
(n−i) . . . BT

(n−(K−1))}.
Now, a new matrix, An, is defined as

An =

[
BT

n BT
(n−1) . . . BT

(n−i) . . . BT
(n−(K−1))

]

=



bn1 b(n−1)1 b(n−i)1 b(n−(K−1))1

bn2 b(n−1)2 b(n−i)2 b(n−(K−1))2

...
... · · · ... · · · ...

bnl b(n−1)l b(n−i)l b(n−(K−1))l

...
...

...
...

bnB b(n−1)B b(n−i)B b(n−(K−1))B



.

and is called the partial product address matrix. This matrix is the concatenation of the

bit-wise representation of the K input samples, B(n−i) for i = 0, 1, ...,K − 1, where the ith

column is the B-bit binary representation of x[n − i] for i = 0, 1, ...,K − 1. The lth row in

the matrix An represents the K-bit binary address used to find the lth partial product in the

distributed arithmetic memory table.

After defining this new matrix An, the input sample vector Xn can be expressed as T·An.

By substituting this new expression for Xn, Eq. (2.18) can be written as

y[n] = Wn · (T · An)T = Wn · AT
n · TT . (2.19)
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Next, a new vector, Pn, is defined as

Pn = Wn · AT
n (2.20)

and is denoted as the partial product vector. The lth element in the vector Pn is the value of

the lth partial product of the distributed arithmetic computation.

By using this new vector Pn in Eq. (2.19), the distributed arithmetic equation for an FIR

filter in matrix notation is

y[n] = Pn · TT . (2.21)

The adaptive filter algorithm used in these partially updated DA filters is the least mean

square (LMS) algorithm. In matrix notation, the LMS filter weight update equation is

Wn+1 = Wn + 2µeXn. (2.22)

For an adaptive algorithm, the updated partial product vector, Pn+1, is equal to

Pn+1 = Wn+1 · AT
n . (2.23)

When updating the filter weights using the LMS algorithm and substituting Eq. (2.22) into

Eq. (2.23), Pn+1 becomes

Pn+1 = (Wn + 2µeXn) · AT
n . (2.24)

where e is the signal error. Earlier, the input sample vector Xn was written as the product

of the binary scaling vector T and of the partial product address matrix An. Using this

expression for Xn, Eq. (2.24) can be written as

Pn+1 = (Wn + 2µeT · An) · AT
n = Wn · AT

n + 2µeT · An · AT
n . (2.25)

Noting the first product in Eq. (2.25) is equal to the updated partial product vector Pn+1,

Eq. (2.25) can be expressed as

Pn+1 = Pn + 2µeT · An · AT
n . (2.26)
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Eq. (2.26) is the equation for updating the (n+1)th partial product vector using the previous

nth partial product vector plus the autocorrelation of the binary representation of the input

samples x[n − i] for i = 0, 1, ...,K − 1.

Note, the matrix generated by the multiplication An ·AT
n is a B× B symmetrical matrix,

and the diagonal elements of this matrix is equal to K. If the input signal is zero-mean, the

successive input samples are uncorrelated, and the individual bits in the binary representa-

tion of each input sample x[n−i] are uncorrelated, then the expectation of any non-diagonal

element of An · AT
n is equal to zero, and this product is simply the B × B identity matrix

multiplied by K. Substituting K · IB for An ·AT
n in Eq. (2.26), the equation for updating the

partial product vector becomes

Pn+1 = Pn + 2µeT · K · IB = Pn + 2µeKT. (2.27)

If the product of 2µK is a power of two, then the update simply becomes the previous partial

product vector plus the error shifted by a power of two times the binary scaling vector T.

When Eq. (2.27) is taken literally, this update equation implies that only B partial prod-

ucts in the DA memory table need to be updated every sample period. The memory el-

ements which are updated for the (n + 1)th sample are determined by the partial product

address matrix for the nth sample. B additions are needed every sample period for a par-

tially updated distributed arithmetic adaptive filter using a single memory table. However,

adaptive filters using a partially updated memory table experience reductions in their con-

vergence rate.

Notice for all the partial update methods proposed so far, the distributed arithmetic

partial product address matrix is formed from the B-bit binary representation of the input

samples and not from the B-bit binary representation of the filter coefficients. Methods like

sliding-block distributed arithmetic, which will be described in Section 2.2.2.2, and the one

proposed in Section 3.1 use a partial product address matrix composed of the binary bits

of the filter coefficients. By using this approach, the problems of updating the DA memory

table and updating the filter coefficients are broken into two separate ones.
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2.2.2 Fully Updated DA Filters

Currently, two approaches exist to fully updating the memory tables in a distributed arith-

metic filter. They are using the brute-force method and a form of DA called sliding-block

distributed arithmetic. A summary of these type of adaptive distributed arithmetic methods

are given below in Sections 2.2.2.1 and 2.2.2.2. The primary advantage of using a fully

updated memory table over a partially updated one for an adaptive filter is the near-ideal

convergence rate rather than a reduced one for a given adaptive algorithm.

2.2.2.1 Brute-Force Method

To implement an adaptive filter using a DA structure, the entries of the memory table, which

contains all possible combination sums of the filter weights and are utilized for determining

the required partial products, need to be recalculated and to be updated on a sample-by-

sample basis to prevent a loss in the convergence rate. A brute-force implementation that

updates each weight individually according to an adaptive filtering algorithm such as the

one shown in Eq. (2.22), and then regenerates the memory table using the new weights,

will be computationally expensive and time consuming, causing significant reduction in

the filter throughput. To fully update a memory table using brute-force, this method would

take (K/2−1)2K +1 additions for a K-tap filter. When compared to a partially updating DA

method, the brute-force method utilizes approximately (K/B)2(K−1) times more additions

for a K-tap filter. For example a 16-tap filter using 8-bit input samples, the brute-force

method uses approximately 128x more additions to fully update its memory table.

2.2.2.2 Sliding-Block Distributed Arithmetic

Sliding-block distributed arithmetic is a coefficient driven, rather than input driven [9, 11-

29], mechanization of DA. Since the contents of the memory tables are changing over

time, the key issue is developing a method that minimizes the number of additions needed

to build those tables. In SBDA, the input data is collected in blocks and then the appropriate

samples are windowed and convolved with the FIR filter coefficients as shown in Figure 2.5.

This type of DA only changes the contents of one DA memory table every sample period.
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Figure 2.5. An illustration of SBDA in action, where K = 4, m = 2, and k = 2.
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A summary of SBDA is given below.

The key issue in a coefficient driven DA mechanization is developing a method that

minimizes the number of additions needed to build the DA memory tables. If the update

were done using brute-force, then it would take (k/2−1)2k +1 additions for a k-tap filter. In

SBDA, an observation is noted that the contents of the memory change slowly over time.

In other words, only the oldest input sample needs to be removed while the newest input

sample needs to be added. Thus, only 2k−1 additions and 2k−1 subtractions for a total of 2k

computations are required for a k-tap filter. This results in a reduction in the number of

operations necessary by about a factor of k/2 − 1 over brute-force. However, for SBDA to

eliminate the subtractions, each DA memory table is associated with a fixed set of inputs.

Because of this fact and assuming a K-tap filter is split into m sub-filters of k taps, m + 1

base units are necessary. Every sample period, one of the base units is selected to update

its outdated memory table with the k most recent input samples and is called the bridging

unit.

The memory table being updated is constructed as follows. For simplification, the table

is shown in a square matrix format. The assumption is that the oldest k/2 samples are

associated with the 2k/2 columns while the k/2 most recent samples are associated with

the 2k/2 rows. Each column is associated with a binary code , c = {ck/2...c0}, where c0

is affiliated with the oldest sample and ck/2 is affiliated with the k/2 oldest sample. On

the other hand, another unique binary code, r = {rk/2...r0}, is associated with each row

where r0 is affiliated with the k/2 newest sample and rk/2 is affiliated with the most recent

sample. Now that the terminology has been described, the focus can return to how the DA

memory table is generated. First, the table is initialized with all zeros. When the current

sample arrives, it is added to the DA memory table as the oldest input sample since it was

the first to come. In other words, this sample is added to any column where c0 = “1”.

Then, the table is updated in the following order. First, the columns starting from c1 to

ck/2 are updated. Subsequently, the rows are updated beginning from r0 to rk/2. With each
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ensuing sample, they are added to their appropriate places in the table. After k samples,

the DA memory table is now complete. As a simple example, a description of how the DA

memory table is generated is considered for the 2-tap base unit case. At time n−, the table

is initialized to all zeros. When the sample x[n] arrives, it is added to the rightmost column

of the matrix. This column has a binary code of c = “1”. At the next sample x[n + 1], it is

added to the bottommost row whose binary code is r = “1”. Now, the current DA memory

table is complete, and a new one begins to be generated at n + 2. Note in this example,

the DA memory table with the oldest samples is shifted to the right. An illustration of this

example is shown in Figure 2.6.
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-
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Figure 2.6. An illustration of the how the DA memory tables are generated over time in SBDA.

To account for the passage of time, the filter coefficients need to be aligned with the
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proper data; therefore, they are passed from one base unit to the next as shown in Figure 2.7.

The newest input sample needs to be aligned with the first filter coefficient, h[0], and the

x
[n
]...

...

x
[n
-k
]

x
[n
-(
k
+
1
)]

...

x
[n
-(
2
k
-1
)]

......

...

x
[n
-k
(M
-1
)-
(k
-1
)]

...

newest

sample

oldest

sample

h
[0
]

h
[k
(M
-1
)+
(k
-1
)]

h
[k
(M
-1
)+
1
]

h
[1
]

x
[n
-k
(M
-1
)-
1
]

x
[n
-1
]

x
[n
-k
(M
-1
)]

x
[n
-(
k
-1
)]

h
[k
-1
]

h
[k
(M
-1
)]

h
[k
+
(k
-1
)]

h
[k
]

h
[k
+
1
]

Figure 2.7. An illustration of the movement of the filter coefficients and input samples among multiple
units.

oldest input sample needs to be aligned with the last filter coefficient, h[k(m− 1) + (k − 1)].

As time passes, the coefficients are passed to the right. In Figure 2.7, the data has been

windowed and any data that occurs before and after what is shown is assumed to be zero.

The shifting of the coefficients is necessary because the contents of the DA memory tables

in the base units do not move as time passes.

Using the methods above for generating the DA memory table and for accounting of

time, a description of how SBDA works is now provided. To assist in the explanation, an

illustration of SBDA in action, where K = 4, m = 2, and k = 2, is shown in Figure 2.5.

SBDA is filtering the input samples x[n] through x[n − 3]. However, the newest sample

is not contained in any of the previous two base units, and the memory content of those

units is fixed; therefore, a new DA memory table in a new base unit must be created. Note,

that x[n − 4] in the second base unit is not used and the coefficient associated with it is

zero. Now, the filter coefficients span the bridging unit and the two base units. At next

cycle, n + 1, the newest sample, x[n + 1], is added to the DA memory table. Since the

generation of the new table is now complete, the bridging filter becomes the first base filter
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and the previous first base filter the second base unit. The coefficients slide over to the left

only to cover the two base units. This shift accounts for the elapse of one sample. Since

the filter does not need any data from the previous second base unit, it becomes the new

bridging unit and its memory contents are initialized to zero. At time n+2, the cycle begins

again. Note at every sample, the coefficients are shifted to the left and when it gets to the

beginning of the queue, it is shifted back to end of the queue like a circular buffer.
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CHAPTER 3

NEW TECHNIQUES FOR ADAPTIVE DISTRIBUTED
ARITHMETIC FILTERS

A couple of new techniques are proposed in this chapter to address the potential issues

regarding the usage of distributed arithmetic in adaptive filters. These issues are the diffi-

culty of updating the contents of the memory table and the relatively high memory usage. In

the first part of this chapter, a new memory table update method is proposed in Section 3.1.

Compared to the typical approach previously used to mitigating the memory table update

issue, the newly proposed method is able to address this issue without introducing new

ones. To address the memory usage issue, a previously known type of adaptive distributed

arithmetic is combined with a memory reduction technique. In addition to reducing the size

of the memory table, the proposed combination was modified to further reduce the compu-

tational workload for updating the memory table. The details of this modified combination

is provided below in Section 3.2

3.1 New Memory Table Update Method

A new hardware architecture using conjugate distributed arithmetic (CDA) which is suit-

able for high throughput hardware implementations of LMS adaptive filters is presented.

Unlike a traditional distributed arithmetic (DA) implementation where all possible combi-

nation sums of the filter coefficients are stored in a memory table, in the CDA architecture,

all possible combination sums of the input signal samples are stored in the memory table

and updated at the arrival of every sample using an efficient update procedure. In the CDA

formulation, the filter weights are represented as B-bit 2’s complement binary numbers,

wi = −bi0 +

B−1∑

l=1

bil2−l, i = 0, . . . ,K − 1, (3.1)
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where bil is the lth bit in the 2’s complement representation of wi. Substituting Eq. (3.1)

into Eq. (2.1) and swapping the order of the summations yields

y[n] = −


K−1∑

i=0

bi0x[n − i]

 +

B−1∑

l=1


K−1∑

i=0

bilx[n − i]

 2−l. (3.2)

Now, the memory table has all possible combination sums of the input signal samples

{x[n], x[n − 1], . . . , x[n − K + 1]}.
For fixed filters, the standard DA architecture is far more efficient than the CDA ar-

chitecture since the memory table does not have to be updated every sample instance. On

the other hand for an adaptive filter, the CDA architecture is superior for reasons described

below. In an adaptive filter, e.g. LMS, the weights wi are updated according to

wi[n + 1] = wi[n] + µe[n]x[n − i] (3.3)

where µ is the step size and e[n] is error between the filtered output and a desired target

signal. With the traditional DA architecture, the entire memory table will have to be re-

computed using the updated set of weights. In the case of the CDA architecture, since the

weights are individually stored (not as all possible combination sums in a 2K element mem-

ory table), their update can be easily performed. The update of the memory table containing

all possible combination sums of the input signal samples will also have to be performed;

however, this can be done far more efficiently than recomputing the entire memory table as

in the traditional DA implementation by using the procedure described in [30] for updating

the DA-A-MEM. The details of this update procedure are provided in Section 3.1.1.

In this implementation, the term µe[n] is quantized to one of L values, each selected to

be some power of 2. This enables us to minimize the on-chip area usage by replacing the

hardware multiplier by a simple barrel shifter. In other words, the product of the contents of

the DA-A-MEM[n] with µe[n] is approximated by a right shift of the contents of the DA-A-

MEM[n]. It must be noted that while such an approximation does not affect the throughput,

it causes a marginal degradation in the convergence of the distributed arithmetic adaptive

filter (DAAF). In Figure 3.1, a MATLAB simulation comparison for the convergence of
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the following two LMS implementations is provided: (i) the actual product µe[n]× DA-A-

MEM[n] is calculated and (ii) the term µe[n] is quantized to one of L = 8 values (each

value is a power of 2) and thus the product is implemented by a single shift operation.

In both cases, a white Gaussian random noise signal with zero mean and unit variance

was used as the input and the desired signal, d[n], was generated by filtering the input

with a 256-tap low-pass FIR filter. The e[n]’s used in the plot in Figure 3.1 for both the

above mentioned cases are obtained by averaging 150 independent trials of the respective

MATLAB simulations.
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Figure 3.1. MATLAB simulation of convergence for LMS implementations Case (i) Actual µe[n]×
DA-A-MEM[n] is used and Case (ii) µe[n] is quantized to one of L = 8 values (powers of 2). The
e[n]’s used in the plot for both the above mentioned cases are obtained by averaging 150 independent
trials of the respective MATLAB simulations.

3.1.1 Updating the Conjugate DA Memory Table

Let the state of the memory table at a sample time instance n be denoted MEM[n]. Fig-

ure 3.2 shows the update of the MEM[n] from MEM[n − 1] for K = 4. It may be observed
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that the contents of the even addressed locations (locations whose addresses have a 0 in the

LSB) of the MEM[n] are the contents of the lower half (locations whose addresses have

a 0 in the MSB) of the MEM[n − 1]. Also, the contents of the odd addressed locations

(locations whose addresses have a 1 in the LSB) of the MEM[n] can be obtained from the

even addressed locations of the MEM[n] according to

MEM(2l+1)[n] = MEM(2l)[n] + x [n] , l = 0, . . . , 2K−1 − 1. (3.4)

The update of the MEM[n] from MEM[n− 1] can be summarized by the following two

steps:

Step 1: The lower half of the MEM[n − 1] is re-mapped to even addressed locations

of the MEM[n] as shown by the arrows in Figure 3.2. Instead of physically moving the

contents of the memory table, this re-mapping operation can be performed by a simple left-

rotation of the K address lines of the memory table. Address rotation allows the physical

contents of memory to remain the same, even as the external logic sees the table as re-

mapped. It can be observed that the external address referring to a given physical address

at the time n is the left-rotated version of the external address referring to the same physical

address at the time n − 1. Therefore, the effect of address rotation can be accomplished by

connecting the external and the internal addresses via K, K-to-1 input multiplexers. The

log2(K) select lines of each of the K multiplexers are connected to the log2(K) bits of a

counter, which is incremented with the sample clock. Thus, by address rotation, the entire

mapping of the memory table can be done instantaneously at the arrival of the new sample

x[n].

The address rotation is controlled by the DA filter update control module.

Step 2: It must be noted that the address rotation maps the upper half of the MEM[n−1],

containing sums involving the oldest sample x[n−4], to the odd addressed locations at time

n. The entries in these odd addressed locations of the MEM[n] are overwritten by values

obtained according to Eq. (3.4). In other words, the contents of the odd addressed locations

of the MEM[n] are obtained by reading the contents of the corresponding preceding even
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Time nTime n-1

Figure 3.2. Update of the MEM[n] from MEM[n − 1].

addressed locations, adding the newest sample x [n] and then storing the result back at

the odd addressed locations. The filter weights wi, i = 0, 1, . . . ,K − 1, may be updated

according to Eq. (3.3) in parallel with the update of the LUT.

3.1.2 Architectures for large filter taps

In any DA based system as the filter order increases, the memory requirements of the

implementation grow exponentially. For example, a 128-tap DA FIR filter will require a

prohibitively large 2128 entries in the memory table. This problem may be alleviated by

breaking up the filter into smaller base DA filtering units that require tractable memory

sizes and then summing up the outputs of these units [4]. A K-tap filter may be divided

into m smaller filters each having k-tap DA base units (K = m × k).

A K-tap CDA-based adaptive filter may also be split similarly in a practical implemen-

tation [30]. The m units operate in cascade, with the oldest sample of the lth unit passed on

to the l + 1th unit at the next sample instance. With this decomposition, the total memory
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requirement is reduced from 2K to m × 2k words.

3.1.3 Performance Results

In this section, the performance of the proposed CDA-based adaptive filtering architec-

ture is compared versus the traditional MAC-based architecture. Both architectures were

implemented on an Altera Stratix FPGA clocked at 50MHz.

3.1.3.1 Throughput

The throughput is defined as the number of signal samples processed by an adaptive filter

per second. If t is the number of clock cycles required for filtering and updating the filter

weights according to the adaptation algorithm, then

Throughput =
clock rate

t
. (3.5)

The filtering operation uses B clock cycles. For a K-tap CDA adaptive FIR filter imple-

mented in m sub units, each operating on k samples, the update of the memory table can

be done in 2k−1 clock cycles as described in Section 3.1.1. The weights can be updated at

the same time the memory table is being updated. Since the update of the weights usu-

ally does not take longer than updating the memory table, the total number of clock cycles

for filtering, updating the memory table, and updating the weights is B + 2k−1. Finally,

the adder tree uses dlog2(m)e clock cycles. Thus, the overall K-tap adaptive filter utilizes

B + 2k−1 + dlog2(m)e clock cycles. In other words, the throughput for the proposed DA-

adaptive filter is given by

Throughput =
clock rate

B + 2k−1 + dlog2(m)e . (3.6)

The throughput of the proposed CDA adaptive filter is compared against a MAC-based

adaptive filter. A plot of this comparison is shown in Figure 3.3. As shown in our previous

work [30], the throughput of a DA based FIR filter does not vary much as the filter order is

increased. In contrast, the throughput of the MAC-based approach is reduced by more than

1.5 orders of magnitude when the filter order grows from 16 taps to 1024 taps. For example
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when the filter order is 16 taps, the throughput of a 4 MAC-based adaptive filter is equal

to the throughput of a CDA adaptive filter with k = 4. But for a filter order of 1024 taps,

a CDA adaptive filter with k = 4 has a throughput 48 times greater than a 4 MAC-based

adaptive filter.

Despite an efficient method for updating the memory table, using a base filter order

greater than 4 has severe consequences on the throughput. For example, the throughput for

a CDA adaptive filter with k = 8 is at least five times lower than a CDA adaptive filter with

k = 2. On the other hand, the throughput for a CDA adaptive filter with k = 4 is at most

1.25 times lower than a CDA adaptive filter with k = 2.
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16 Multiply−and−accumulate unit

Figure 3.3. Throughput comparison of CDA versus a traditional multiply-and-accumulate based ar-
chitecture.

3.1.3.2 Number of Logic Elements

In programmable logic systems, the size of the logic design is measured by the number

of logic elements (LEs). For Altera’s Stratix architecture, the LE is the smallest unit for

implementing logic functions. Each LE uses a four-input memory table, a programmable
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register and carry chain with carry select capability. Further details of LE can be found

in [31]. Ten LEs are grouped into one logic array block (LAB) and the LABs are inter-

connected through a row and column-based network. For this analysis, the number of LEs,

instead of the number of LABs, is considered as a metric for area usage since it has more

detailed information about the actual chip area used for the implementation.

In terms of the number of logic elements used to synthesis a particular configuration, a

CDA adaptive filter with k = 8 has the fewest logic elements for a given filter order than

any CDA adaptive filter with k < 8 as illustrated in Figure 3.4. For a CDA adaptive filter

of a certain filter order, the logic element usage decreases as k increases. For reference, the

number of logic elements used in a 1, 4, and 16-MAC based adaptive filter is also shown in

Figure 3.4.
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Figure 3.4. Comparison of the number of logic elements of CDA versus a traditional multiply-and-ac-
cumulate based architecture.
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3.1.3.3 Logic Element Efficiency

In many situations, the amount of die area available for a certain function is limited so

knowing how many logic elements are used is vital. But as transistor sizes shrink, the num-

ber of transistors that can be placed in a fixed die area increases and designers must come

up with new ways of utilizing the additional transistors in an effective way. To measure

the effective usage of these transistors, a metric of how efficiently each logic element is

being used for the computation of the inner product is created. This metric is calculated by

dividing the throughput by the logic element usage. Higher numbers means that the logic

elements are being utilized for beneficial calculation rather than being idle and performing

no computations.

Figure 3.5 is a plot that allows a designer to compare how efficiently each approach

utilizes its logic elements. From the figure, the most logic element efficient design is CDA

with k = 4 followed by CDA with k = 2. All other designs have approximately the same

logic element efficiency and are about 2.5 times less efficient than CDA k = 2 and about

3.3 times less efficient than CDA k = 4. In other words, any MAC-based adaptive filter

for a given filter order would need at least 3.3 times more logic elements to achieve the

same throughput as a CDA adaptive filter with k = 4. Not surprisingly, the logic element

efficiency for a MAC-based adaptive filter does not really change with the number of MACs

because most of the logic elements used in a MAC-based adaptive filter is utilized for

its MACs and the throughput for a MAC-based adaptive filter decreases linearly as more

MACs are used.

3.1.3.4 Memory

Altera’s Stratix architecture has three types of RAM blocks consisting of M512, M4K, and

M-RAM blocks [31]. For each RAM block type, the FPGA synthesis software provided the

number of blocks utilized in the design. In addition, these reports presented the memory

usage in KB. For this analysis, measuring the amount of memory reported in KB is the

appropriate metric especially when comparing the memory requirement with other methods
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Figure 3.5. Logic element efficiency comparison of CDA versus a traditional multiply-and-accumulate
based architecture.

such as DSP microprocessor implementations.

For the MAC-based adaptive filter, the amount of memory used did not vary with the

number of MACs but is only dependent on the filter order as illustrated in Figure 3.6. These

filters used the least amount of memory. For a given CDA adaptive filter order, the memory

usage increased with k. Compared to the MAC-based adaptive filter, a CDA adaptive filter

with k = 2, k = 4, and k = 8 used approximately 1.5, 2.5, and 16.6 times the memory used

by a MAC-based one for a certain filter order. Regardless of the hardware implementation,

the memory usage increased linearly with filter order.

3.1.3.5 Power Consumption Estimates

The power consumption estimates are obtained using the PowerPlay Power Analyzer tool

of Altera’s Quartus II software. A reference on this tool is located at [32]. For an accurate

estimate, a simulation vector was created and utilized as the input to the analyzer. This step

occurred after the place and route for maximum accuracy. By using a simulation vector, its

41



16 32 64 128 256 512 1024

10
−1

10
0

10
1

Number of taps

M
e

m
o

ry
(K

B
)

Memory comparison of CDA versus a traditional multiply−and−accumulate based architecture

 

 

CDA, 2−tap base unit

CDA, 4−tap base unit

CDA, 8−tap base unit

1 Multiply−and−accumulate unit

4 Mulitply−and−accumulate unit

16 Multiply−and−accumulate unit

Figure 3.6. Memory comparison of CDA versus a traditional multiply-and-accumulate based architec-
ture.
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usage will reflect actual design behavior. As has been pointed out by [33-35], an accurate

power estimate must filter out the glitches in the simulation vector so this setting in the

PowerPlay Power Analyzer was activated. With these settings, an accurate power estimate,

usually within 10 percent [36], can be generated [36, 37].

The dynamic thermal power for both CDA and MAC-based adaptive filters are shown

in Figure 3.7. To easily compare power values for different CDA and MAC-based adaptive

filter configurations, the dynamic thermal power was measured when the throughput for

each configuration is the same. A CDA adaptive filter with k = 4 consumed less power

than a CDA adaptive filter with k = 2 or k = 8 and consumed about the same amount

of power as a 16 MAC-based adaptive filter. Although a CDA adaptive filter with k = 4

and a 16 MAC-based adaptive filter used approximately the same amount of power, the

CDA architecture is able to achieve a higher throughput, if necessary, than the MAC-based

architecture.
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Figure 3.7. Power comparison of CDA versus a traditional multiply-and-accumulate based architecture.
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3.1.4 Comparing CDA to SBDA

Although SBDA and CDA can be used for non-adaptive FIR filters, they were both purpose-

fully created for adaptive applications. They both reduce the number of additions needed to

update their DA memory tables, and they both provide easy access for modifying their filter

coefficients unlike input driven DA. To demonstrate the ease of implementing an adaptive

filter, both SBDA and CDA provide descriptions for mechanizations of the LMS algorithm.

The main distinction between SBDA and CDA is the manner in which the input data

is partitioned. In CDA, the data is partitioned into individual samples; hence, every DA

memory table must be updated every sample period. Only the data that is necessary for

filtering is stored in the tables. On the other hand, for SBDA, the data is partitioned into

blocks of k samples; therefore, the data must be windowed before it is filtered. By rotating

the coefficients from one block to the next, only the base unit whose DA memory table con-

tains the oldest samples needs to be updated. This base unit is designated as the bridging

unit. Since it is the only component that is updating the content of its DA memory table, no

extra additions are expended by the other base units. However since the bridging unit intro-

duces an additional partial product that must be added in the DA computation, Bh, which

is the bit precision of the filter coefficients, additional additions are required. In contrast

for CDA, every base unit is recomputing the contents of their tables every sample period,

which requires one addition per updated entry. In terms of memory usage, CDA uses less

than SBDA because SBDA uses an extra table for its bridging unit. Also like SBDA, CDA

is able to eliminate the need for subtractions when updating its memory contents. In other

words, the oldest samples in the DA memory tables are removed through other means.

However, this task is accomplished by a different method in CDA. It is achieved by re-

mapping the DA memory table through address rotation. It only updates the necessary

table entries by using the content already present plus the newest sample.

From a purely computational point of view such as executing the mechanizations on a

microprocessor in sequential order, the following equations state the number of additions
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and the amount of memory needed for SBDA and CDA.

S BDAadditions = Bh (bK/kc + 1) +
(
2k−1 − 1

)
(3.7)

CDAadditions = Bh (bK/kc) + (bK/kc) ·
(
2k−1 − 1

)
(3.8)

S BDAmemory = 2k (bK/kc + 1) (3.9)

CDAmemory = 2k (bK/kc) (3.10)

where Bh is the bit precision of the filter coefficients, K is the filter length, and k is the

size of the base unit. CDA uses 1
bK/kc+1 less memory than SBDA, and this advantage is

significant when bK/kc is small as illustrated in Figure 3.8. However, when bK/kc is large,

this advantage is offset by a significant increase in the number of additions necessary for

CDA over SBDA as shown in Figures 3.9 and 3.10, and is of minimal benefit as shown

in Figure 3.8. A plot of the comparative advantage of CDA over SBDA when k is held

constant as bK/kc is swept for different values of Bh is shown in Figure 3.9. A plot of the

comparative advantage of CDA over SBDA when Bh is held constant as bK/kc is swept

for different values of k is illustrated in Figure 3.10. When the comparative advantage is

positive, CDA uses less adders than SBDA. When the comparative advantage is negative,

SBDA uses less adders than CDA. Interestingly, CDA uses less adders than SBDA when

Bh

(bK/kc−1)·(2k−1−1) > 1.

3.2 Encoding the Memory Tables using Offset Binary Coding

As shown in Section 2.1.2.2, the application of offset binary coding (OBC) to the mem-

ory table of a non-adaptive distributed arithmetic FIR filter is relatively straightforward.

Unfortunately for a typical adaptive input-driven DA filter, the use of OBC just further

complicates the difficult task of updating the memory table. However for sliding-block dis-

tributed arithmetic, the application of offset binary coding to its memory table becomes a

reasonable combination.
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3.2.1 Combining Sliding-Block Distributed Arithmetic with Offset Binary Coding

By applying OBC to SBDA, the size of the memory tables can be reduced in half. However,

this straight-forward combination of SBDA with OBC only yields a memory benefit. Still,

an arithmetic operation either an addition or a subtraction is required to update each entry

in the memory table being updated [1]. For a memory table not encoded using OBC, SBDA

uses the same number of operations because only half of the memory table, which is twice

the size of the one used when it is encoded in OBC, needs to be updated. Therefore, the

number of computations needed is equal to the amount used in SBDA without OBC.

Recall that in SBDA when a DA memory table is about to be updated, it is initialized

to zero. To generate the tables in OBC format, half of the most current input, x[n], needs

to be added or subtracted from every entry based on the bit stream for the current sample,

b0l. When b0l = “0”, 0.5x[n] is subtracted, and when b0l = “1”, 0.5x[n] is added. As an

alternative, a block of the k most current samples can be collected and used to compute
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the initial condition, Q(0), so that the DA memory tables are initialized to it. With the

exception of the first step where no update is required, each subsequent update only needs

to add the current sample to the entries where b0l = “1”, which maps only to half of the

table. This modification of SBDA is called SBDA-OBC.

A comparison of how the computational flow for updating a DA memory table en-

coded using OBC for a 3-tap filter differs between SBDA and SBDA-OBC is shown in

Figure 3.11. For both SBDA and SBDA-OBC, three steps plus the initialization of the

memory contents are required to completely update a memory table. One step is taken

every sample period, and does not affect the filtering computation. For SBDA, eight ad-

ditions are needed, and for SBDA-OBC, six additions are required. In the first step for

SBDA, no additions are needed because the current sample plus zero is equal to the current

sample. For each subsequent step, four additions are used. In the first step for SBDA-OBC,

no additions are needed because no update is necessary since the memory table is already

initialized to the correct values. For each subsequent step, it uses two additions at every

step. Plus, two additions for computing Q(0), which is necessary to update the memory

table. In this case, SBDA-OBC uses 25% fewer additions than SBDA.

3.2.2 Differences in Implementation between SBDA and SBDA-OBC

As a point of reference, a description of a plausible SBDA implementation is given. The

overall block diagram for such an implementation is shown in Figure 3.12. This implemen-

tation is composed of M SBDA processing units, a memory table update control unit, an

adder tree, and a DA backend.

The DA backend is composed of an adder/subtractor, a multiplexer, and a couple data

storage elements. This backend along with the adder tree is used to maximize resource shar-

ing among the SBDA processing units and to eliminate the redundant hardware. This sin-

gle backend plus the adder tree is used to replace the DA backends found in non-optimized

SBDA processing units, and can be found in other DA implementations [30]. The purpose

of this backend is to accumulate/decimate the output of the adder tree with the previously
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Figure 3.11. A comparison of how SBDA and SBDA-OBC generates a DA memory table encoded in
OBC.

scaled partial products, to capture and to scale these intermediate accumulated values by

a factor of one-half, and to capture the output y[n]. Note, the output of the adder tree is

decimated from the accumulated value when processing data associated with the most sig-

nificant bit, l = 0. This event usually occurs on the last computational cycle. Also note,

the previously accumulated value is set to zero when beginning the DA computation. Nor-

mally, this event occurs when data associated with the least significant bit, l = B − 1, is

being processed.

The primary function of the memory table update control unit is to generate the address

sequence required to update a memory table, and to determine which memory table among
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Figure 3.12. Overall block diagram of an SBDA implementation.

the M processing units needs their memory updated. Recall, only one memory table needs

to be updated each sample period when using SBDA unlike other adaptive DA filter imple-

mentations. This unit updates the memory table with the oldest input samples, and over k

sample periods refreshes the contents of the entire table. This process is described in more

detail in Section 2.2.2.2 and in [1].

The M SBDA processing units are where the distributed arithmetic memory tables re-

sides and where the filter weight updates and the DA filtering address generation are per-

formed. A block diagram of this unit is shown in Figure 3.13. This unit is composed of

a memory table, two multiplexers, an adder, and a weight update and address generation

unit. The memory table is used to store all possible partial products. It has two address

sources. One called the updating address is used when the contents of its memory table is

being refreshed with the newest samples. This only occurs when its memory table contents

become outdated. It takes k samples to refresh the table. During the first refresh cycle,
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Figure 3.13. Block diagram of the SBDA processing unit.

which lasts one sample period, the entire table is initialized to zero. For the next k − 1 re-

fresh cycles, which last k−1 sample periods, the most recent input sample, x[n], is inserted

into the memory table using the contents stored at that address plus the input sample. All

control such as the address sequence for updating the memory table every refresh cycle is

provided by the memory table update control unit. However, the memory table can be used

for filtering during this refresh period. Once the contents are fully updated, they are valid

for another K − k samples.

The weight update and address generation unit is where the filter coefficients are up-

dated and where the filtering addresses are generated using those updated filter weights.

For many adaptive algorithms, a bit-serial approach to updating the filter coefficients and

to generating the filtering addresses can be used. An approach like this can significantly

reduce the hardware needed. More detail about such an approach can be found in [1].

Now that a baseline SBDA implementation has been established, a plausible SBDA-

OBC implementation can be described and contrasted with this baseline. An overall block
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diagram of a plausible SBDA-OBC implementation is given in Figure 3.14, and a block

diagram of its processing unit is given in Figure 3.15. Several key differences are identified
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Figure 3.14. Overall block diagram of an SBDA-OBC implementation.

when comparing these figures with those for SBDA. First, a couple of these differences are

found at the system level. For one, the memory table update control unit is somewhat

modified. Now, it is also responsible for generating the local initial condition Q(0)local and

the global initial condition Q(0)global.

Before, a local initial condition was not necessary because the update memory table was

initialized with zero; therefore, this value did not need to be passed into the processing unit.

Also in SBDA, the memory tables are not encoded using OBC; hence, an initial condition

is not required, while in SBDA-OBC, the memory tables are encoded using OBC. The

local initial condition is computed by accumulating the k most recent input samples. After

k sample periods, the accumulator is reset to zero, and the accumulation begins anew the

next sample period. A new local initial condition is needed every k samples. As mentioned

52



Weight Update &

Address Generation

Unit

2:1

Mux

sel

2
k-1
-Word

RAM

Addr

Data In Data Out

+

h[(mk+n) % (N+k))]

h[(m(k+1)+n) % (N+k)]

Update Memory

ym[n]

...

...

b0

MSB

Local Q(0)

x[n]

-1

Filtering Address

Update Address

b1

bk-2

bk-1

...

...

2:1

Mux

sel
2:1

Mux

sel

Figure 3.15. Block diagram of the SBDA-OBC processing unit.

earlier, the start of the computation needs to be delayed by k sample periods, since this value

is needed to initialize the memory table. However, this delay only increases the latency of

the system by k samples and does not decrease the throughput.

In addition to the local initial condition, a global initial condition needs to be calculated.

This value is needed at the beginning of the DA computation, usually during the processing

of the data associated with the least significant bit. The global initial condition is the

summation of all the local initial conditions used in either the M or the M + 1 memory

tables. Unlike the local initial condition, the global initial condition is computed using a

moving averager of either M or M + 1 local initial conditions. The number of local initial

conditions used is dependent on if the K-tap filter uses all M + 1 processing units or just M

processing units. Like the local initial condition, a new global initial condition is computed

every k samples. This global initial condition is necessary because of the common DA

backend. If this DA backend was contained within each SBDA-OBC processing unit, then

a global initial condition would not be needed. However, if the global initial condition is

removed in this fashion, then the hardware for the overall system significantly increases,

approximately M times additional DA backends. In light of this consequence, any hardware
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associated with computing and with using a global initial condition is worthwhile.

At the processing unit level, a couple differentiations are identified. The most obvious

are the exclusive OR gates used at the output of the weight update and address generation

unit. These exclusive OR gates are needed to compress a k-bit address into a k − 1-bit

address as used for memory tables encoded using OBC. Remember, the size of an OBC

encoded memory table is half the size of a regular one; hence, the necessity of compressing

the address bits is required.

Another key difference is the need to be able to select an inverted output −ym[n] or a

non-inverted output ym[n]. This ability is necessary to implement any DA filter using offset

binary coding. This selection must be done within the processing unit because this value is

dependent on the local address bit b0 and not some global variable. Therefore, this function

cannot be incorporated into the DA backend on the system level.

3.2.3 Comparison of SBDA and SBDA-OBC

A logical starting point for making a comparison of SBDA and SBDA-OBC is to create

formulas for certain critical measurement criteria. The measurements of importance are

the data memory usage and the computational workload required for the computation of

one sample. Since in the case of SBDA and SBDA-OBC, the only type of computation

of significance that is used is addition. The computational workload is measured as the

number of additions needed for both updating the memory table and filtering the data.

These four formulas are listed below.

S BDAadditions = Bh (bK/kc + 1) +
(
2k−1 − 1

)
(3.11)

S BDA − OBCadditions = Bh (bK/kc + 1) +
(
2k−2 + 1

)
(3.12)

S BDAmemory = 2k (bK/kc + 1) (3.13)

S BDA − OBCmemory =
(
2k−1 + 1

)
· (bK/kc + 1) (3.14)

where Bh is the bit precision of the filter coefficients, K is the filter length, and k is the size

of the sub-filter. A table of the computational workload and of the data memory usage for
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different K when Bh = 16 and when k is selected such that the computational workload

is minimized is given below in Table 3.1. If there are multiple configurations that mini-

mize the computational workload, then the configuration with the lowest memory usage is

reported.

Table 3.1. Computational Workload and Data Memory Usage for Various Filter Configurations when
Bh = 16

koptimial* # of Additions # of Memory Words

K SBDA-OBC SBDA SBDA-OBC SBDA-OBC** SBDA SBDA-OBC SBDA-OBC** SBDA

16 6 5 65 73 79 99 68 128
32 6 5 113 121 127 198 119 224
64 6 6 193 193 207 363 363 704
128 7 7 337 337 367 1235 1235 2432
256 8 7 593 625 655 4257 2405 4736
512 9 8 1041 1105 1167 14649 8385 16640
1024 10 9 1905 1953 2079 52839 29298 58368

* koptimal is defined as the k that minimizes the computational workload.
** The value provided is for the SBDA-OBC filter configuration when the size of the sub-filter is set to the koptimal for SBDA.

A plot of the relative advantage of SBDA-OBC over SBDA in terms of the number

of additions needed for the computation of one sample versus the number of sub-filters

when Bh = 8, 16, 24 and k = 8 is shown in Figure 3.16. From this figure, it is observed that

SBDA-OBC is most beneficial when the bit precision of the filter coefficients is low and the

filter is grouped into few sub-filters. This advantage diminishes as the number of additions

needed for updating becomes numerically insignificant to the number of additions needed

for filtering when either Bh is large, the filter is split into many sub-filters (i.e. bK/kc is

large), or a combination of both.

Figure 3.17 is a plot of the relative advantage of SBDA-OBC over SBDA in terms of

the number of additions needed for the computation of one sample when k is varied and

Bh = 16. It is observed that SBDA-OBC is most beneficial when the input samples are

grouped into large blocks and the filter is grouped into few sub-filters. By increasing k,

the ratio of computations used for updating over computations used for filtering increases;

hence, the benefit of using SBDA-OBC over SBDA is significant.

An interesting observation is that SBDA-OBC is not beneficial when k = 2. In this case,
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Figure 3.16. A plot of the 1 − S BDA−OBCadditions
S BDAadditions

versus bK/kc for varying Bh when k = 8.

the additional overhead associated with generating the initial condition, which is essential

in the computational reduction of updating the memory table in other cases, in SBDA-OBC

is significant. Specifically, in this case, SBDA requires one addition to update its memory

table. However, SBDA-OBC requires two additions, one to update a memory table entry

and another to compute the initial condition.

A plot of the relative advantage of SBDA-OBC over SBDA in terms of the memory

usage when k is varied is shown in Figure 3.18. Note, this advantage is not dependent on K

or on Bh. From the figure, it is observed that SBDA-OBC is most beneficial when the input

samples are grouped into large blocks. Although SBDA-OBC still has a 25% advantage

over SBDA when k is small, this advantage is diminished because of the slight memory

overhead associated with SBDA-OBC. However, as the size of the memory tables increase

exponentially, this overhead quickly becomes insignificant, and the advantage peaks at

about 50%. This occurs when k ≈ 15.

Since one of the primary focuses of this research is the reduction of the computational

workload, it would be useful just to focus on only the updating portion. In the following
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Figure 3.17. A plot of the 1 − S BDA−OBCadditions
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versus bK/kc for varying k when Bh = 16.

two equations, the number of additions required to update the DA memory table over k

samples for SBDA and SBDA-OBC are given below. These equations are for a k-tap sub-

filter. Eq. 3.16 has two terms because the first one, (k− 1)2k−2, is for updating the table and

the second, (k − 1), is for computation of the initial condition.

S BDAadds,updating(k) = (k − 1)(2k−1 − 1) (3.15)

S BDA − OBCadds,updating(k) = (k − 1)2k−2 + (k − 1) (3.16)

Figure 3.19 is a plot of the relative advantage of SBDA-OBC over SBDA in terms of

the number of additions needed for only updating the memory table when k is varied. This

advantage is not dependent on K or Bh. It is observed that SBDA-OBC is most beneficial

when the input samples are grouped into large blocks and only provides a benefit when

k > 3. This figure reaffirms the observation made about Figure 3.17 when k = 2.

3.3 Summary

When computational resources are limited in particular multipliers, distributed arithmetic

(DA) is used in lieu of the typical multiplier-based filtering structures. This advantage in
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versus k.

terms of computational resources is further extended when the bit precision of the filter

is high. However due to the construction of the memory tables used for distributed arith-

metic, it is not well suited for adaptive applications. The bottleneck when using DA for an

adaptive filter is updating the memory table. Several attempts have been done to accelerate

the process of updating the memory. Although these approaches do reduce the amount of

processing necessary to update the memory, this reduction is gained at the expense of ad-

ditional memory usage and of convergence speed. A more desirable solution is to develop

a new approach for updating the memory table efficiently without using additional mem-

ory resources and compromising the convergence rate. In this thesis, such an approach is

proposed and developed.

To develop an adaptive distributed arithmetic filter with a convergence rate that is not

compromised, the memory table must be fully updated, and to realize that for an adaptive

distributed arithmetic filter the memory table does not have to be composed of the com-

binations of the filter coefficients and be addressed by concatenating bits of the input data

as in a traditional distributed arithmetic filtering structure. The memory table instead can
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Figure 3.19. A plot of the 1 − S BDA−OBCadds,updating
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versus k.

composed of the combinations of the input samples and can be addressed by concatenating

bits of the filter coefficients.

For an adaptive filter, the contents of the memory table must be updated regardless

if the memory table is based on the filter coefficients or based on the input samples. In

this research, an efficient method for fully updating a memory table that is composed of

the combinations of the input samples and that is addressed by concatenating bits of the

filter coefficients was proposed and developed. The proposed update method is based on

exploiting the temporal locality of the stored data, which is a combination of the input sam-

ples that is determined by its memory address, and subexpression sharing. The proposed

update method is possible because the data set, which is composed of the input samples,

that the memory table is constructed from changes slowly. In other words, only the newest

input sample needs to be added to the data set, and the oldest input sample needs to be

removed from the data set. The proposed update method reduced the computational work-

load for updating the memory table by about k/2−1 over brute-force and required no addi-

tional memory resources. This type of distributed arithmetic that uses the proposed update
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method is called conjugate distributed arithmetic (CDA). This type of update method is not

applicable to a memory table composed of the combinations of the filter coefficients and

addressed by concatenating bits of the input samples because the entire data set, which is

composed of the filter coefficients, changes from sample to sample because of the adaptive

nature of the filter.

The performance of CDA was compared against a traditional multiplier based approach

and against sliding-block distributed arithmetic (SBDA), which is the only other adaptive

distributed arithmetic approach that addresses the same issues as CDA. When CDA is com-

pared against a traditional multiplier based approach, the following conclusions were de-

duced. The throughput of CDA remained relatively constant as the filter order increased

while the throughput of a traditional multiplier based approach decreased quadratically

with increasing filter order. Also, a CDA adaptive filter can use up to 3.3 times fewer logic

elements than a traditional multiplier based adaptive filter to achieve a certain throughput

and uses the same amount of memory as a non-adaptive distributed arithmetic FIR filter.

When CDA is compared against SBDA, the following conclusions were deduced. CDA

uses 1
bK/kc+1 less memory than SBDA, and this advantage is significant when bK/kc is small.

However, when bK/kc is large, this advantage is offset by an increase in the number of

additions necessary for CDA over SBDA. Although in some situations, CDA uses less

adders than SBDA when Bh

(bK/kc−1)·(2k−1−1) > 1.

In addition to developing a new type of adaptive distributed arithmetic called CDA, the

only other type of adaptive distributed arithmetic that addressed the same issues as CDA

called SBDA was modified to reduce the memory usage and to reduce the computational

workload. SBDA was modified to encode the memory tables using offset binary coding

(OBC). However, the computational workload for updating the memory table remained

unchanged from the non encoded case for the same filter length. By modifying the value

the memory table is initialized, the computational workload for updating the memory table

is reduced for most filtering configurations. This modification of SBDA to encode the
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memory tables using OBC and to initialize the memory table with the initial condition

instead of zero as originally proposed in SBDA is called SBDA-OBC. When SBDA-OBC

is compared with SBDA, the following conclusions were deduced. SBDA-OBC requires

less memory than SBDA. The maximum memory usage advantage of SBDA-OBC over

SBDA is approximately half, and this situation occurs when the size of the sub-filter is

large. In terms of the computational workload, SBDA-OBC is most advantageous for large

sub-filters and when the filter is split into few sub-filters. In this case, the computational

workload is reduced almost in half.

3.4 Contributions

In the research proposed in this section, contributions are made in the development of an

adaptive filter using distributed arithmetic. The issues addressed by this research are the

lack of an efficient method to fully update the memory table of a distributed arithmetic

adaptive filter, the usage of memory resources beyond that of the non-adaptive case, and

the compromised convergence rate. The following contributions were made to address

these issues and to develop an adaptive distributed arithmetic filter with an efficient method

to fully update the memory table without using additional memory resources and with

uncompromised convergence performance.

1. A new method for fully updating the memory table was proposed. By fully updat-

ing the memory table, the convergence performance of the adaptive filter remains

unaffected; therefore, the proposed update method can be used to construct adaptive

filtering structures using distributed arithmetic without a compromised convergence

rate.

2. A new method for efficiently updating the entire memory table was proposed. The

proposed update method reduced the computational workload for updating the mem-

ory table by about k/2 − 1 over brute-force.
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3. By using a filter coefficient driven distributed arithmetic filtering structure, the addi-

tional memory resources required by most other types of adaptive distributed arith-

metic filtering structures, which use an input driven memory table that is composed

of the combinations of its filter coefficients, are eliminated.

In this research, the proposed memory update method is combined with a filter coefficient

driven distributed arithmetic filtering structure. This combination is called conjugate dis-

tributed arithmetic (CDA).

After a through literature review of adaptive distributed arithmetic filtering structures,

only one other type of adaptive DA that is called sliding-block distributed arithmetic (SBDA)

also addresses the issues outlined above with an adaptive DA filter. Although CDA is not

the only adaptive distributed arithmetic filtering structure that addresses these issues, CDA

is advantageous in a variety of filter configurations.

1. Among the adaptive distributed arithmetic filters that fully updates its memory tables,

CDA uses the least amount of memory. Its memory usage is only matched by the

brute-force method; however, CDA reduces the number of operations required by

about k/2 − 1 over brute force. Recall, only adaptive distributed arithmetic filters

that fully updates its memory tables is able to maintain the convergence speed of the

LMS algorithm.

2. CDA uses less memory than SBDA especially if the filter is broken up into few

subunits. This advantage is useful when coded on a system with limited memory.

3. CDA uses fewer additions than SBDA when the bit precision of the filter coefficients

in SBDA is greater than the number of additional memory table entries that need

to be updated in CDA. Typically, this occurs when the coefficient bit precision, the

number of subunits, the depth of the memory tables, or a combination of these three

are low. A couple benefits of fewer additions are boosted sampling rate, or lower

power usage.
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In addition to CDA and SBDA, an alternative adaptive DA filter structure called SBDA-

OBC was proposed and developed. Its memory update method is a modification of the

one used in SBDA, and it has lower memory usage and fewer additions for most filter

configurations over SBDA. The principle motivations for modifying SBDA are to encode

the memory using OBC such that the memory usage is reduced almost in half and to modify

SBDA in such a way that when the memory is encoding using OBC that the computational

workload for updating the memory table is reduced. The following are the observed savings

of SBDA-OBC.

1. SBDA-OBC has the lowest memory requirements of any current mechanization for a

coefficient driven, memory-based DA adaptive FIR filter. Specifically, SBDA-OBC

uses about 50% less memory than SBDA when the filter length of the subunits is

long.

2. SBDA-OBC has the fewest number of additions for a large number of filtering con-

figurations among the current mechanizations for a coefficient driven, memory-based

DA adaptive FIR filter. Specifically, SBDA-OBC needs about 50% less additions

than SBDA when the filter length of the subunits is long.
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CHAPTER 4

DIGITAL-TO-ANALOG MIXED-SIGNAL DISTRIBUTED
ARITHMETIC FIR FILTER

DA is computationally more efficient than MAC-based approaches when the input vec-

tor length is large. However, the trade-off for the computational efficiency is the increased

power consumption and area usage due to the use of a large memory. These problems

can be alleviated by utilizing mixed-signal circuit implementations for optimized DA per-

formance, power consumption, and area usage. The proposed mixed-signal DA architec-

ture [38-40], which was done in partnership with Erhan Özalevli, is built by utilizing the

analog storage capabilities of floating-gate (FG) transistors for programmability. The cir-

cuit compactness is obtained through the application of the iterative nature of the DA com-

putational framework, where many multipliers and adders are replaced with an addition

stage, a single gain multiplication, and a coefficient array.

The computational efficiency of this DA implementation is demonstrated by configur-

ing it as an FIR filter. The low-power implementations of these filters can readily ease the

power consumption requirements of portable devices. Also, due to the serial nature of the

DA computation, the power and area of this filter increase linearly with its order. Hence,

this design approach allows for a compact and low-power implementation of high-order

FIR filters.

In the next section, the DA computation is described. Subsequently, the hybrid dis-

tributed arithmetic architecture is explained, and the integration of tunable voltage refer-

ences into the DA implementation is described. After that, the precise programming/tuning

of these voltage references is explained. In addition, the theoretical analysis of second order

effects in the design is given and the experimental results of this reprogrammble distributed

arithmetic FIR filter are presented. In the last part of this chapter, previously reported FIR

filter implementations are given and their design issues are summarized and compared with

64



the proposed implementation.

4.1 Analog Architecture

This hybrid DA architecture is composed of four components, which are a 16-bit shift regis-

ter, an array of tunable FG voltage references (epots) [41, 42], inverting amplifiers (AMP),

and sample-and-hold (SH) circuits, as illustrated in Figure 4.1. The DA computation is

governed by the timing of the digital data and control bits and an illustration of the timing

is shown in Figure 4.2. Digital inputs are introduced to the system by using a serial shift

register. These digital input words are the digital bits, bi, j in Eq. (2.3), which select the epot

voltages to form the appropriate sum of weights necessary for the DA computation at the

jth bit. The clock frequency of the shift register is dependent on the input data precision,

K, and the length of the filter, M, and is equal to M ·K times the sampling frequency. Once

the jth input word is serially loaded into the top shift register, the data from this register is

latched at K times the sampling frequency. If the amount of area used by the shift regis-

ters is not a design concern, then ideally an M-tap FIR filter should have M shift registers.

A clock that is K times faster than the sampling frequency would be used for this ideal

configuration.

The analog weights of DA are stored by the epots. When selected, these weights are

added by employing a charge amplifier structure composed of same size capacitors and

a two-stage amplifier, AMP1. The epot voltages, as well as the rest of the analog volt-

ages in the system, are referenced to a reference voltage, Vre f = 2.5V . Since the addi-

tion operation is performed by using an inverting amplifier, the relative output voltage,

when the Reset signal is enabled, is equal to the negative sum of the selected weights for

Cini = CFBamp1 . For the first computational cycle, the result of the addition stage is the

summation,
∑m−1

i=0 wibi(K−1), in Eq. (2.3) which is the addition of weights for the LSBs of the

digital input data.

In the feedback path of the system, a delay, an invert and a divide-by-two operations
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Figure 4.1. Implementation of the 16-tap hybrid FIR filter. bi is the input bit for jth cycle of operation
and y(t) is the output. Epots store the analog weights. Sample-and-holds, SHs, are used to obtain the
delay and hold the computed output voltage.
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Figure 4.2. Digital clock diagram of the filter architecture.

are each used for the DA computation. For that purpose, sample-and-hold circuits, SH1

and SH2, and inverting amplifiers, AMP1 and AMP2, are employed in the implementation.

The amplifier outputs which are used to feed it back into the system for the next cycle of

the computation are stored in the SH circuits. Non-overlapping clocks, CLK1 and CLK2,

are used to hold the analog voltage while the next stream of digital data is introduced to

the addition stage. These clocks have a frequency of K times the sampling frequency. The

stored data is then inverted relative to the reference voltage by using the second inverting

amplifier, AMP2, to obtain the same sign as the summed epot voltages. AMP2 is identical

to AMP1 and has the same size input/feedback capacitors. After obtaining the delay and the

sign correction, the stored analog data is fed back to the addition stage as delayed analog

data. During the addition, it is also divided by two by using CFB = CFBamp1/2 = C/2 which

gives a gain of 0.5 when it is added to the new sum. This operation is repeated until the

MSBs of the digital input data is loaded into the shift register. The MSBs are the (K − 1)th
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bits and are used to make the computation 2s-complement compatible. This compatibility

is achieved by disabling the inverting amplifier in the feedback path during the last cycle

of the computation by enabling the Invert signal. As a result during the last cycle of the

computation, the relative output voltage of AMP1 is

Voutamp1
− Vre f = −

M−1∑

i=0

Cini

CFBamp1

(
Vre f − Vepoti

)
bi0 +

K−1∑

j=1

2− j
M−1∑

i=0

Cini

CFBamp1

(
Vre f − Vepoti

)
bi j

(4.1)

where the first term is the result of the calculation with the sign bits. Finally when the

computation of the output voltage in Eq. (4.1) is finished, it is sampled by SH3 using CLK3

which is enabled once every K cycle. The computed voltage is stored in SH3 until the

next analog output voltage is ready. The new computation is started by enabling the Reset

signal to zero out the effect of the previous computation. Then, the same processing steps

are repeated for the next digital input data.

4.2 Analog Circuit Details

To achieve an accurate computation using DA, the circuit components are designed to min-

imize the gain and offset errors in the signal path. In this architecture, those components

are the epots, the inverting amplifiers, and the sample-and holds.

The epot, shown in Figure 4.3, is modified from its original version [41] to obtain a

low-noise voltage reference. It is a dynamically reprogrammable, on-chip voltage reference

that uses a low-noise amplifier integrated with FG transistors and programming circuitry to

tune the stored analog voltage. The amplifier in the epot circuit is used to buffer the stored

analog voltage so that the epot can achieve low noise and low output resistance as well as

the desired output voltage range. An array of epots is used for storing the filter weights; and

during the programming, individual epots are controlled and read by employing a decoder.

In this architecture, epots and inverting amplifiers are the main blocks that use FG

transistors to exploit their analog storage and capacitive coupling properties. A precise

tuning of the stored voltage on FG node is achieved by utilizing the hot-electron injection
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Figure 4.3. Schematic of the epot-based low-noise voltage reference.

and the Fowler-Nordheim tunnelling mechanisms. The epots employ FG transistors to store

the analog coefficients of the inner product. In contrast, the inverting amplifiers use them

not only to obtain capacitive coupling at their inverting-node, but also to remove the offset

at their FG terminals.

One of the main advantages of exploiting FG transistors in this design is that the area

allocated for the capacitors can be dramatically reduced. It is shown in [43] that epots can

be utilized to implement a compact programmable charge amplifier DAC. This structure

helps to overcome the area overhead, which is mainly due to layout techniques used to

minimize the mismatches between the input and feedback capacitors. Similarly in this DA

implementation, the unit capacitor, C, is set to 300 f F, and no layout technique is employed.

As expected, due to inevitable mismatches between the capacitors, there will be a gain error

contributed from each input capacitor. The stored weights are also used to compensate this

mismatch. When the analog weights are stored to the epots, the gain errors are also taken

into account to achieve accurate DA computation.

Unlike switched-capacitor amplifiers, the addition in this implementation is achieved
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without resetting the inverting node of the amplifiers. This is because the floating-gate

inverting-node of the amplifiers allow for the continuous-time operation. This design ap-

proach eliminates the need for multi-phase clocking or resetting. The inverting amplifiers

are implemented by using a two-stage amplifier structure [44], shown in Figure 4.4, to ob-

tain a high gain and a large output swing. Similar to the epots, the charge on the FG node

Vin- Vin+

Figure 4.4. Schematic of the two-stage, high gain, large output swing inverting amplifier.

of these amplifiers is precisely programmed by monitoring the amplifier output while the

system operates in the reset mode. In this mode, the shift registers are cleared and the Re-

set signal is enabled. Therefore, all the input voltages to the input capacitors including the

voltage to the feedback capacitor, CFB, are set to the reference voltage. These conditions

ensure that the amplifier output becomes equal to the reference voltage when the charge

on the FG is compensated. The charge on the FG terminal is tuned using the hot-electron

injection and the Fowler-Nordheim tunnelling mechanisms. By using this technique, the

offset at the amplifier output is reduced to less than 1mV.

Lastly, SH circuits need to be designed to simultaneously achieve high sampling speed

and high sampling precision due to the bit-serial nature of the DA computation. Therefore,

these circuits are implemented by utilizing the sample-and-hold technique using Miller

hold capacitance [45], as illustrated in Figure 4.5. This compact circuit minimizes the
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Figure 4.5. Schematic of the sample-and-hold circuit utilizing the Miller hold capacitance.

signal dependent error, while maintaining the sampling speed and precision by using the

Miller capacitance technique together with Amp3 shown in Figure 4.6. For simplification,

Vcas

Vin

Vout

Vbias

Figure 4.6. Schematic of Amp3 used in Figure 4.5.

if we assume there is no coupling between M1 and M2, and amplifier, Amp3, has a large

gain, then the pedestal error contributed from turning switches (M1 and M2) off can be

written as

∆VS 1 + ∆VS 2 =
∆Q1(C2 + C2B)

C2B(C1 + C2) + C1C2(A + 1)
+

∆Q2

C2
(4.2)
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where ∆Q1 and ∆Q2 are the charges injected by M1 and M2, respectively. Also, A and

C2B are the gain and input capacitance of the amplifier, Amp3. ∆Q2 is independent of

the input level, therefore ∆VS 2 can treated as an offset. In addition, the error contributed

by M1, ∆VS 1, can be minimized by the Miller feedback, and this error decreases as A

increases [45]. Due to serial nature of the DA computation offset in the feedback path is

attenuated as the precision of the digital input data increases. Therefore, Amp3 is designed

to minimize mainly the signal dependent error, ∆VS 1.

Moreover, a gain-boosting technique [46] is incorporated into the SH amplifier, Amp4,

as shown in Figure 4.7, to achieve a high gain and fast settling. Two SH circuits are used in

Vb2

Vout

Vcas

Vin-Vin+

Vb1

Figure 4.7. Schematic of Amp4 used in Figure 4.5.

the feedback path to obtain the fixed delay for the sampled analog voltage. In addition, the

third SH is utilized to sample and hold the final computed output once every K cycles. This

SH uses a negative-feedback output stage [47], shown in Figure 4.8, to be able to buffer

the output voltage off-chip. Due to the performance requirements of the system, these SH

circuits consume more power than the rest of the system.
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Figure 4.8. Schematic of the output buffer.

4.3 Programming the Analog Weights

The epots are incorporated into the design not only to store the weights of DA, but also to

obtain reprogrammable tunability. In this section, programming of these epots is described.

The epot programming circuitry is shown in Figure 4.9. The stored voltage is tuned

d
ig
In
je
c
t

select

Vsinject

Vdinject

Injection Circuitry

+

-
Vfg

Vepot_out

Ctun

Cin

Vref

Vthr

Vtun

d
ig
tu
n
n
e
l

select

Vbias

High Voltage Amplifier

Figure 4.9. Schematic of the epot programming circuitry.

by the using Fowler-Nordheim tunnelling and the hot-electron injection mechanisms. The
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tunnelling is utilized for coarse programming of the epot voltage, and used to reach 200mV

below the target voltage. The purpose of undershooting is to avoid the coupling effect of

the tunnelling junction on the floating gate when tunnelling is turned off. The tunnelling

mechanism decreases the number of electrons, thus increasing the epot voltage. After

selecting the desired epot by enabling its select signal, the tunnelling bit, digtunnel, is

activated and a high voltage across the tunnelling junction is created. During programming,

the high voltage amplifier is powered with 14V .

In contrast to the coarse programming, the precise programming is achieved by using

the hot-electron injection. The hot-electron injection mechanism decreases the epot voltage

by increasing the number of electrons on the FG terminal. It is performed by pulsing

a 6.5V across the drain and the source terminals of a pFET, as illustrated in Figure 4.9.

As the FG voltage, V f g, decreases, the injection efficiency drops exponentially since the

injection transistor has better injection efficiency for smaller source-to-gate voltages. By

keeping the FG potential at a constant voltage, the number of injected electrons, hence the

output voltage change, is accurately controlled. To keep the FG at a constant potential, the

input voltage of the epot, Vre f , is modulated during programming based on the epot voltage

output, since the epot output is approximately at the same potential as V f g.

After the programming, the tunnelling and injection voltages are set to ground to de-

crease the power consumption, and minimize the coupling to the floating-gate terminal.

Also, Vre f is set to 2.5V to have the same reference voltage for all parts of the system. The

epot voltage is programmed with respect to this voltage reference with an error less than

1mV for a 4V output range. The amount of charge that needs to be stored at an epot de-

pends on the targeted weight and the gain error introduced by the input/feedback capacitors

at the addition stage. During the programming, the Reset signal is enabled and all other

capacitor inputs are connected to Vre f while periodically switching the targeted epot to find

the voltage difference when epot is selected and unselected. This voltage is used to find the

approximate value of the stored weight.
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4.4 Analysis of Error Sources

In the analog domain, other sources of error exist for a distributed arithmetic FIR filter that

is not observed in the digital domain. In this section, an analysis of these error sources that

are generated by the analog components used in the proposed circuit is performed. These

error sources are gain and offset errors, non-ideal weights, and noise in the signal path.

In this section, the source of these errors are identified, and their contribution on DA are

analyzed. The effect of non-ideal weights is mostly dependent on the application that DA

is used for. For this particular implementation, their effect on FIR filtering applications is

analyzed.

4.4.1 Computational Errors

As in serial digital-to-analog converters, the gain and offset errors are determined by the

accuracy of the DA computation. If the error at the addition stage is due to the weight errors

in the epots and the mismatch errors between the input capacitors, Cini (for i = 1, 2, ...), is

assumed to be negligible, then the gain/offset errors and the noise in the data paths are

the main sources of error. In this architecture, the inverting amplifiers, AMP1 and AMP2,

are sources of gain and offset errors, and the sample-and-hold circuits, SH1 and SH2, are

sources of offset error. In addition, the mismatch between CFB and CFBamp1 as well as

between CFBamp2 and Cinamp2 are sources of gain error. In this analysis, the effects of gain,

offset, and random errors in the system were analyzed.

4.4.1.1 Gain Error

Unlike in the digital domain where a division by two is simply a shift of a bit, in the analog

domain, this operation is achieved by employing an analog circuit. Usually, an error is

generated by this circuit implementation, and the result of the division is 0.5 plus a gain

error, ∆. The effect of ∆ on the output of a DA computation, y[n], is modelled by

y[n] = −
M−1∑

i=0

wibi0 +

K−1∑

j=1

(0.5 + ∆) j
M−1∑

i=0

wibi j (4.3)
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The output error caused by ∆ can be found by computing the difference of Eq. (2.3) and

Eq. (4.3). For simplification, the term
∑M−1

i=0 wibi j is set to α. Therefore, the output error, ε,

is reduced to the difference of two geometric sums and can be expressed as

ε = α
1 − (0.5 + ∆)K

1 − (0.5 + ∆)
− α1 − 0.5K

1 − 0.5
= α

1 − (0.5 + ∆)K

0.5 − ∆
− α1 − 0.5K

0.5
(4.4)

A plot of the output error due to gain error normalized by α for varying values of ∆

and K is given in Figure 4.10. Since this system converts the digital input data to an analog

Figure 4.10. Computational error, ε/α, of the system due to quantization error and gain non-ideality,
∆.

output, the output error due to quantization is also provided. The intersection of output error

(due to gain error) and quantization error curves is the minimum achievable output error of

the proposed system and is used to determine the precision of an equivalent digital system.

For example when ∆ = 2−11, the two curves intersected at ε/α = 0.002 and K = 8. This

intersection point is the minimum computational error when ∆ = 2−11, and the proposed

system is equivalent to using an 8-bit digital DA at this intersection point. Also note that

as K became large, ε/α approached a limit which is equal to 2∆/(0.5 − ∆).

76



4.4.1.2 Offset Feedback Error

Another source of error is the offset error. It is modelled as a constant error, δ, added to

each jth summation of weights,
∑M−1

i=0 wibi j, as follows

y[n] = −
δ +

M−1∑

i=0

wibi0

 +

K−1∑

j=1

2− j

δ +

M−1∑

i=0

wibi j

 (4.5)

After distributing
∑K−1

j=1 2− j and then grouping the δ into one term, the error due to offset

can be written as the summation of a geometric series.

erroroffset = δ
1 − 0.5K

1 − 0.5
− 2δ = δ · 2−(K−1) (4.6)

As K increases, the offset error in the feedback loop decreases. As a byproduct of how

DA handles two’s complement numbers, the last summation of weights,
∑M−1

i=0 wibi0, is

subtracted rather than added. This system decreases the offset error especially when the K

is large. For K = 8 and δ = 100mV , the offset error is 0.7813mV .

4.4.1.3 Random Feedback Error

The random error is assumed to be Gaussian and is represented by X j. The random variable

X j is added to the summation of weights at each jth iteration, and all X j’s are independent

and identically distributed.

y[n] = −
X0 +

M−1∑

i=0

wibi0

 +

K−1∑

j=1

2− j

X j +

M−1∑

i=0

wibi j

 (4.7)

Once the term
∑K−1

j=1 2− j is distributed and the X′js are collected into one summation, the

mean and variance of y[n] can be written as µY = µX
1−0.5K

1−0.5 − 2µX and σ2
Y = σ2

X
1−0.25K

1−0.25 ,

respectively. As K approaches infinity, the mean of the random error approaches zero, and

the maximum variance of the random error is 4
3σ

2.

4.4.2 Non-ideal Weight Errors for FIR filters

The errors due to non-ideal filter weights, such as random offset error, are caused by the

limited precision of the epot programming and the epot noise. The effects of these errors are

similar to the quantization effects in the digital domain which causes the linear difference
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equation of an FIR filter to become a nonlinear one [48]. In addition, an analysis of the

random time-varying error of the filter weights is provided.

4.4.2.1 Offset Error

An analysis similar to the one presented in [48] is given. Although the analysis provided is

for a Type 2 FIR filter, the analysis can be generalized to any type of symmetric FIR filter

[48]. An analogous analysis can be performed for nonsymmetric FIR filters.

4.4.2.2 Symmetric Offset Error

The variable e[n] is equal to the difference between the output generated using the ideal

filter weights and the output generated using the non-ideal filter weights. The frequency

response for e[n] can be written as E(w) =
∑M−1

n=0 e[n]e− jwn. Assuming the FIR filter is

Type-2 and the offset errors are of the same symmetry as the filter, E(w) can be rewritten

as a summation of cosines.

E(w) = e− jw M−1
2

M
2 −1∑

n=0

2e[n]cos
(
w(

2n + 1
2

)
)

(4.8)

Treating e[n] as a random variable with a variance of σ2
e and using some trigonometric

identities and Euler’s rule, the variance of E(w) can be written as follows

σ2
E(w) = σ2

e

(
M +

sin(wM)
sin(w)

)
(4.9)

σ2
E(w) can vary from zero to 2Mσ2

e . Its frequency response for M = 32 is illustrated in

Figure 4.11. The effects of symmetrical offset errors are similar to the effects of coefficient

quantization in symmetrical digital FIR filters. These effects are reduced pass-band width,

increased pass-band ripple, increased transition-band, and reduced minimum stop-band

attenuation [48].

4.4.2.3 Nonsymmetric Offset Error

Unlike the previous analysis, E(w) cannot be rewritten as a summation of cosines because

the offset error is not symmetrical. Assuming e[n] is a random variable with a variance of

σ2
e , the variance of E(w), σ2

E, is equal to Mσ2
e for an M-tap FIR filter. Unlike the variance
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Figure 4.11. Frequency response of the variance for symmetric offset error, M = 32.

for symmetrical offset errors which varies with frequency, the variance for nonsymmetric

offset errors is constant.

4.4.2.4 Random Error

The effects of time-varying random error on DA computation can be modelled as

y[n] = −
M−1∑

i=0

(wi + ei0)bi0 +

K−1∑

j=1

2− j
M−1∑

i=0

(wi + ei j)bi j (4.10)

Assuming each ei j is a random variable that is independent and identically distributed, the

error can be expressed as

error = −
M−1∑

i=0

ei0bi0 +

K−1∑

j=1

2− j
M−1∑

i=0

ei jbi j (4.11)

Since the above equation is just a summation of random variables, the parameter of sig-

nificance for this analysis is the maximum variance of the random error, σ2
error. For sim-

plification, the analysis assumed that bi j for all i and j is equal to 1. First, the variance

of −∑M−1
i=0 ei0bi0 is computed as Mσ2. Then, the variance of

∑K−1
j=1 2− j ∑M−1

i=0 ei jbi j is cal-

culated as Mσ2 1−0.5K

1−0.5 . These two variances added together are equal to a total variance,
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σ2
error = Mσ2(3 − 0.5K−1), which approaches 3Mσ2 when K is large.

4.5 Measurement Results

In this section, the experimental results from the proposed DA architecture, which is con-

figured as an FIR filter, are presented. The measurement results are obtained using a Tek-

tronix TDS 5034B oscilloscope from chips that were fabricated in a 0.5µm CMOS process.

This 16-tap FIR filter is designed to run at 32/50kHz sampling frequency depending on

the desired performance. The precision of the digital input data is set to 8 for these exper-

iments. To meet this sampling rate, the data is loaded into the upper shift register at a rate

of 3.84MHz for a 32kHz sampling frequency or 6.4MHz for a 32kHz sampling frequency.

To demonstrate the reprogrammability, the filter is configured as a comb, a low-pass,

and a band-pass filter. The coefficients of these filters are shown in Table 4.1. Rather than

Table 4.1. Ideal and Actual (programmed epot voltages) coefficients of the comb, low-pass, and band–
pass filters.

Filter Comb LPF BPF
Coefficients Ideal Actual (V) Ideal Actual (V) Ideal Actual (V)

1 0.4 2.0996 -0.0190 2.5192 0.033 2.4670
2 0 2.4994 -0.0390 2.5393 -0.064 2.5639
3 0 2.4994 0.0260 2.4738 -0.053 2.5530
4 0 2.5007 0.0160 2.4835 0.038 2.4617
5 0 2.5005 -0.0240 2.5239 0.047 2.4528
6 0 2.5000 -0.0360 2.5362 -0.054 2.5541
7 0 2.4999 0.0600 2.4401 -0.056 2.5561
8 0 2.4994 0.1800 2.3201 0.057 2.4425
9 0 2.4997 0.1800 2.3201 0.057 2.4427

10 0 2.5002 0.0600 2.4391 -0.056 2.5560
11 0 2.4998 -0.0360 2.5358 -0.054 2.5535
12 0 2.5002 -0.0240 2.5240 0.047 2.4527
13 0 2.5001 0.0160 2.4853 0.038 2.4616
14 0 2.5001 0.0260 2.4743 -0.053 2.5526
15 0 2.4997 -0.0390 2.5389 -0.064 2.5638
16 0.4 2.0996 -0.0190 2.5184 0.033 2.4669
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using an oscilloscope, the actual voltages are measured using an Agilent model 3440 mul-

timeter. The ideal coefficients are given to illustrate how close the epots are programmed

to obtain the actual coefficients. The epots are programmed relative to a reference voltage,

Vre f , which is set to 2.5V . The error of the stored epot voltages are kept below 1mV to

minimize the effect of weight errors on the filter characteristics.

An 858Hz sinusoidal output of the low-pass filter at a 50kHz sampling rate is illus-

trated in Figure 4.12. The spurious-free-dynamic-range (SFDR), which is the difference in

Figure 4.12. The output transient response and power spectrum of the low-pass filter for an input
frequency of 858Hz with a 50kHz sampling frequency.

amplitude between the input frequency and the largest non-input frequency components,

is measured to be 43dB. For the comb filter with a 22kHz input signal frequency, it is

observed that the SFDR does not degrade as shown in Figure 4.13. Although the input

precision was set to 8 bits, the gain error in the system as well as noise in the experimental

set-up limits the maximum achievable SFDR.
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Figure 4.13. The output transient response and power spectrum of the comb filter for an input fre-
quency of 22kHz with a 50kHz sampling frequency.

82



The second experiment is performed to characterize the magnitude and phase responses

of the filters. For that purpose, a sinusoidal wave at a fixed sampling rate, 32/50KHz, is

generated using the digital data, and the magnitude and phase responses are measured by

sweeping the frequency of the input sine wave from DC to 16/25kHz. For this experiment,

256 data points are collected to accurately measure the frequency response of these filters.

These responses follow the ideal responses closely even if the sampling rate is increased

as illustrated in Figures 4.14, 4.15, and 4.16. Any variation in the frequency response

Figure 4.14. The magnitude and phase response of the comb filter at 32kHz and 50kHz sampling rates.

as the sampling rate increases is caused by the noise and offset in the feedback path as

well as due to the performance degradation of the circuits. As the output signal amplitude

becomes very low, the experimental set-up limits the resolvable magnitude and phase. As

expected for a symmetrical FIR filter, the measured phase responses of comb, low-pass,

and band-pass filters are linear.

The static power consumption of the fabricated chip is measured as 16mW. Most of

the power is consumed by the SH and inverting amplifier circuits. The die photo of the

designed chip is shown in Figure 4.17. The system occupies around half of the 1.5 ·1.5mm2

die area. The cost to increase the filter order is 0.011mm2 of die area and 0.02mW of power
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Figure 4.15. The magnitude and phase response of the low-pass filter at 32kHz and 50kHz sampling
rates.

Figure 4.16. The magnitude and phase response of the band-pass filter at 32kHz and 50kHz sampling
rates.
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Figure 4.17. Die photo of the DA based FIR filter chip.
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for each additional filter tap. This readily allows for the implementation of high-order

filters. Lastly, the performance of the filter is summarized in Table 4.5.

Table 4.2. Performance and design parameters of the FIR filter.
Process 0.5µm, 2-poly CMOS
Power supply 5V
Reference voltage 2.5V
Epot Programming Resolution 100µV
Programming Hot-Electron Injection
Mechanisms and Electron Tunneling
Unit capacitor 300 f F
Sampling frequency 30/50KHz
Input data precision 8
Number of filter taps 16
Increase in the power per tab 0.02mW
Increase in the area per tab 0.011mm2

Total static power consumption 16mW
Used chip area ∼ 1.125mm2

4.6 Summary

We have presented an implementation of a FIR filter exploiting the distributed arithmetic to

minimize hardware complexity and floating-gate transistors to obtain programmable analog

coefficients. The proposed architecture is well suited for implementing high-order FIR fil-

ters due to its low-area and power requirements for each additional FIR filter tap. Also, the

programmable analog coefficients of this filter will enable the implementation of adaptive

systems that can be used in applications such as noise cancellation and adaptive equaliza-

tion.

4.7 Contributions

In this chapter, a reprogrammable mixed-signal FIR filter was proposed and developed.

The issues addressed by the proposed reprogrammable mixed-signal FIR filter are the lack

of a compact reprogrammable filtering structure, the non-symmetric and imprecise filter
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coefficients, the inconsistent sampling of the input data, and the corruption of the input

samples. The following contributions were made to address these issues.

1. A reprogrammable mixed-signal FIR filter was proposed and developed to address

the issues of the lack of a compact reprogrammable filtering structure, the non-

symmetric and imprecise filter coefficients, the inconsistent sampling of the input

data, and the corruption of the input samples.

2. Distributed arithmetic and epots were used to address the issue of a lack of a compact

reprogrammable filtering structure for a reprogrammable mixed-signal FIR filter. A

combination of distributed arithmetic and epots were used to construct a compact

reprogrammable mixed-signal FIR filter.

3. epots were used to address the issue of non-symmetric and imprecise filter coeffi-

cients for a reprogrammable mixed-signal FIR filter. epots were used to precisely

reprogram the filter coefficients. These filter coefficients can be programmed with

such precision that a natural by-product is high filter coefficient symmetry.

4. Digital registers were used to address the issues of inconsistent input data sampling

and of input sample data corruption for a reprogrammable mixed-signal FIR filter.

The digital registers were used to sample the input data consistently and to eliminate

input data corruption. Because the digital registers can be cascaded without concern

for data corruption, this ability to cascade many input digital registers together allows

for the construct of a high order FIR filter using the proposed reprogrammable mixed-

signal FIR filtering structure.

5. An analysis of potential error sources generated by using analog components was per-

formed to determine the effects that these analog components have on the proposed

reprogrammable mixed-signal FIR filter. Deduced from this analysis, a guideline

was generated of where to focus the design effort for the proposed reprogrammable
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mixed-signal FIR filter. The guideline is to use most of the design effort on mini-

mizing the variance of random errors sources and maximizing the precision of the

amplifiers used.

To verify the feasibility of implementing a mixed-signal DA filter structure, equations were

developed to model the effects of non-idealities on the performance. The non-idealities

studied are gain and offset error, non-ideal coefficients, and noise in the signal path.
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CHAPTER 5

FRAMEWORK FOR AN ANALOG-TO-ANALOG MIXED-SIGNAL
DISTRIBUTED ARITHMETIC SECOND-ORDER SECTION

FILTER

Although a digital-to-analog mixed-signal filter is useful, another practical filter topol-

ogy would be if the input to output flow was both analog. In addition, converting the filter

structure from a finite impulse response filter to an infinite impulse response (IIR) filter,

in particular a second order section, would be of tremendous benefit. Although the filter

would not be of linear phase, which would eliminate its usage from certain applications,

an implementation of an analog, discrete-time second order section (SOS) filter is very

commonly used.

This chapter will begin with an overview of applying distributed arithmetic to IIR filters,

which a second-order section is a subset. Next, a description of the analog architecture is

given. Also, this section includes a detailed description of the hardware operation of the

proposed DA-based second-order section.

5.1 Distributed Arithmetic for Infinite Impulse Response Filters

Up to this point, distributed arithmetic has been used to implement FIR filtering structures.

In this section, the application of distributed arithmetic to a generic infinite impulse re-

sponse (IIR) filter is described. Since a second-order section is a type of IIR filter, this

section is equally applicable to a second-order section.

The application of DA to an IIR filter is very similar to that of an FIR filter. As men-

tioned earlier, the output of a FIR filter is the inner product of the input and weight vectors,

and DA is an efficient mechanization for computing an inner product, which makes DA

well-suited for FIR filters. In the case of an IIR filter, DA is just as well-suited because

the output of an IIR filter is the difference of the inner product of the feedback filter coef-

ficients, wa, and the output samples, y[n], from the inner product of the feedforward filter
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coefficients, wb, and the sampled input, x[n]. Mathematically, this difference can be written

as

y[n] =

K−1∑

i=0

wb[i] x[n − i] +

L−1∑

j=1

wa[ j] y[n − j]. (5.1)

for an IIR filter with K feedforward and L feedback coefficients. Note, this equation could

have been just as easily been defined as the difference of two inner products instead of the

summation of them without the loss of any meaning. Although this definition is not consis-

tent with well known DSP references such as [49] and common DSP software development

tools such as Mathworks Matlab, this definition was utilized to simplify the analysis of the

effects of analog components in a mixed-signal DA second-order section implementation.

This analysis is provided in the Section 5.5.

As shown earlier in the FIR filter case, the partial products used for DA can be generated

by either the bit-slices of the digitized input samples or the quantized filter coefficients.

Since in this case where an analog-to-analog input-to-output signal flow is desired, the

partial products should be created using the bit-slices of the quantized filter coefficients, wa

and wb. So let the feedforward and feedback filter coefficients be represented as B-bit 2’s

complement binary numbers,

wa[ j] = −a j0 +

B−1∑

l=1

a jl2−l, j = 1, . . . , L − 1, and (5.2)

wb[i] = −bi0 +

B−1∑

l=1

bil2−l, i = 0, . . . ,K − 1, (5.3)

where a jl is the lth bit in the 2’s complement representation of the jth feedback filter coef-

ficient, wa, and bil is the lth bit in the 2’s complement representation of the ith feedforward

filter coefficient, wb. Substituting Eq. (5.2) and Eq. (5.3) into Eq. (5.1) and swapping the

order of the summations for both the feedforward inner product,
∑K−1

i=0 wb[i] x[n − i], and

the feedback inner product,
∑L−1

j=1 wa[ j] y[n − j], yields

y[n] = −


K−1∑

i=0

bi0x[n − i]

+
B−1∑

l=1


K−1∑

i=0

bilx[n − i]

 2−l−


L−1∑

j=1

a j0y[n − j]

+
B−1∑

l=1


L−1∑

j=1

a jly[n − j]

 2−l.

(5.4)
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For a given set of x[n−i] (i = 0, . . . ,K−1), the terms in the square braces for the feedforward

inner product may take only one of 2K possible values, and the terms in the square braces

for the feedback inner product may take only one of 2(L−1) possible values for a given set of

y[n − j] ( j = 1, . . . , L − 1). These partial products for both the feedforward and feedback

inner products may be stored into a memory table. The entry in the memory table for the

feedforward path that is denoted as FF-MEM and that is addressed by r is given by

FF-MEM(r) =

K−1∑

i=0

c(r)
i x[n − i], r = 0, . . . , 2K − 1, (5.5)

where c(r)
i is the ith bit in the K-bit representation of the address r. In other words,

r =

K−1∑

i=0

c(r)
i 2i. (5.6)

For each l, l = 0, . . . , B− 1, the term in the first two square braces in Eq. (5.4) is essentially

the entry in the FF-MEM whose address is
∑K−1

i=0 bil2i. For the feedback path, the entry in

its memory table that is denoted as FB-MEM and that is addressed by s is given by

FB-MEM(s) =

L−1∑

j=1

d(s)
j y[n − j], s = 0, . . . , 2L − 1, (5.7)

where d(s)
j is the ( j−1)th bit in the (L−1)-bit representation of the address s. In other words,

the address s can be expressed as

s =

L−1∑

j=1

d(s)
j 2( j−1). (5.8)

For each l, l = 0, . . . , B − 1, the term in the last two square braces in Eq. (5.4) is basically

the entry in the FB-MEM whose address is
∑L−1

j=1 a jl2( j−1).

5.2 Analog Architecture

Building upon the earlier success of the digital-to-analog mixed-signal distributed arith-

metic FIR filter, this structure can be modified to implement a second-order section. These

type of filtering elements are useful as the fundamental building blocks of IIR filters de-

signed using such methods as Butterworth, Chebyshev, and Elliptic. This design methodol-

ogy is preferred because a single high order section is very sensitive to quantization errors,
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which leads to stability issues, in the digital domain, and to process variations, which leads

to device mismatch, in the analog domain. By using multiple second order sections, de-

signing the desired filter is much less prone to these issues than using a single high order

section. In addition to this conversion to a different filtering structure, this mixed-signal

filter is targeted to be implemented on a field programmable analog array (FPAA).

5.3 Overview of the Field Programmable Analog Array

A field programmable analog array (FPAA) is a reprogrammable analog device that can

implement multiple circuit topologies or filter types. These kind of devices are analogous

to a field-programmable gate array (FPGA), which is used for the prototyping of digital

circuits, in the digital domain. There are a few type of FPAA’s available to use. The

fundamental difference between these types of FPAAs is the basic circuit building block.

Some FPAAs like the Anadigm AN120E04 [50] use a reprogrammable switched-capacitor

circuit as its basic building block.

For this research, a floating-gate based FPAA is used. Specifically, the RASP 2.8 FPAA

developed by the Integrated Computational Electronics Laboratory of the Georgia Institute

of Technology under the direction of Dr. Paul Hasler [51]. Its fundamental building com-

ponents are floating-gate switches, operational transconductance amplifiers (OTAs), and

capacitors. In addition to these components, there are specialized components such as

Gilbert Multipliers, floating-gate based current mirrors, floating-gate based multiple-input

translinear elements (MITEs), I/O buffers, transmission gates, and NMOS and PMOS tran-

sistors. These components are grouped together into a larger unit called a computational

analog block (CAB). Conceptually, these CABs are similar to the slices of a Xilinx FPGA

or the logic cells of an Altera FPGA. The RASP 2.8 FPAA has thirty-two CABs that are

connected through a floating-gate based routing fabric as shown in Figure 5.1. This FPAA

has two different types of CABs. The most common CAB consists of three OTAs, four

500fF capacitors, two floating-gate based MITEs, a voltage buffer, a transmission gate, and

92



CAB1

CAB2

CAB1

CAB1

CAB1 CAB1

CAB2

CAB1

CAB1

CAB2

CAB1

CAB1

Figure 5.1. Overview of the CAB arrangement on the RASP 2.8 FPAA.

four NMOS or PMOS transistors. A schematic of this CAB is shown in Figure 5.2. The

other type of CAB consists of a floating-gate based OTA, a pair of folded Gilbert multipli-

ers, and a pair of floating-gate based current mirrors. A schematic of this CAB is shown in

Figure 5.3.

5.4 FPAA Hardware Implementation

Using the digital-to-analog mixed-signal DA FIR filter as a template, an analog-to-analog

mixed-signal second order section filter can be designed. However, unlike the earlier effort,

which was fabricated as an ASIC, this filter was targeted for implementation on a RASP

2.8 FPAA. Although this FPAA uses operational transconductance amplifiers (OTAs), these

devices are suitable substitutes for the operational amplifiers used in the earlier implemen-

tation.
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Figure 5.2. Component schematic of CAB1 on the RASP 2.8 FPAA.
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Figure 5.3. Component schematic of CAB2 on the RASP 2.8 FPAA.

5.4.1 Overall Description of the Hardware

An overall hardware schematic of the proposed second-order section implementation is

shown in Figure 5.4. The hardware shown in Figure 5.4 is used to implement nine func-

tions. These functions are:

1. sampling and storing the input,

2. selecting the appropriate sampled and delayed inputs to be summed together for the

(l + 1)th distributed arithmetic computational cycle,

3. sampling and storing the output,

4. selecting the appropriate stored and delayed outputs to be summed together for the

(l + 1)th distributed arithmetic computational cycle,

5. delaying and storing the accumulation term for one computational cycle,

94



-

+

OTA�
Vref

Sample

& Holdout
(SHout)

C
lk
o
u
t

y(t)

Sample

& HoldD0
(SHD0)

C
lk
D
0

Sample

& HoldD1
(SHD1)

C
lk
D
1

C�=500fF
C
F
B =
2
5
0
fF CDA,in=500fF

Vref

CDA,FB=500fF

OTADA

-

+

Sample

& HoldFB,1
(SHFB,1)

ClkFB,1

In
v
e
rt

R
e
s
e
t

Sample

& HoldFB,0
(SHFB,0)

ClkFB,0

Sample

& HoldFF,3
(SHFF,3)

FF3

Sample

& HoldFF,2
(SHFF,2)

FF2

Sample

& HoldFF,1
(SHFF,1)

FF1

Sample

& HoldFF,0
(SHFF,0)

FF0

Cin,3=500fF

Cin,2=500fF

Cin,1=500fF

Cin,0=500fF

Circular

Buffer,

Feedforward

Filter

Coefficients

(BufferFF)

Circular

Buffer,

Feedback

Filter

Coefficients

(BufferFB)

ClkFF,0

Vref

Vref

Vref

Vref

FF3

FF2

FF1

FF0

ClkFF,1

ClkFF,2

ClkFF,3

x(t)

FB0 FB0

Vref

FB1 FB1

Cin,4=500fF

Cin,5=500fF

C
lk
b
it

F
B� (t)

Vref

Vref

Figure 5.4. Component schematic of the mixed-signal second-order section.
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6. inverting the accumulation term,

7. selecting if the feedback term is set to either the non-inverted or inverted accumula-

tion term,

8. selecting if the feedback summation term is set to either the reference voltage or

feedback term, and

9. summing the appropriately selected input and output samples together with half of

the feedback summation term.

These functions are used to generate the output signal, y(t), as necessitated by the dis-

tributed arithmetic mechanization of a second-order section. An overall description of how

these functions are used to generate the output is given in the next section. For more de-

tails about the individual hardware components used in the schematic, they are located in

Section 5.4.3. For more details about the hardware timing, they are located in Section 5.4.4.

5.4.2 Overall Description of the Hardware Operation

The output, y[n], is generated in the following fashion. At the start of the distributed arith-

metic computational cycle, two actions occur. First, one of the input sample and holds,

SHFF,i, i = 0, 1, 2, 3, is sampling the input signal, x(t). The other is setting the feedback

summation term, FBΣ(t), to the reference voltage, Vre f , by using the two-position switch

controlled by the Reset signal. For most of the first computational cycle, the Reset signal

is set to the supply rail of 2.4V . This signaling level means that the feedback summation

term FBΣ(t) is set to the reference voltage Vre f .

During the first computational cycle, the hardware is computing the partial products

associated with the least significant bit, l = B − 1. The circular buffer BufferFF determines

which input samples are needed for the current feedforward partial product. It generates

outputs FF0 through FF3. These outputs are used to control the two-position switches that

connect either the reference voltage Vre f or the output of SHFF,i to the capacitor Cin,i for
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i = 0, 1, 2, 3.

The circular buffer BufferFB determines which output samples are needed for the current

feedback partial product. It generates outputs FB0 through FB1. These outputs are used to

control the two-position switches that connect either the reference voltage or the output of

SHFB,i to the capacitor Cin,i+3 for i = 0, 1.

The selected input and output samples are summed together and inverted using the oper-

ational transconductance amplifier OTAΣ in an inverting configuration utilizing equal sized

feedback and input capacitors, CΣ and Cin,i for i = 0, 1, 2, 3, 4, 5, to form the first accumu-

lation term. The size of these capacitors is 500 f F. Unlike in the digital domain where

an adder tree constructed of multiple adders would be needed, the multiple summations

needed to form the lth feedforward and feedback partial products and to add them together

with half of the feedback summation term FBΣ(t) are performed by a single amplifier. At

this point, the accumulation term is equal to −∑2
i=0 bi(B−1)x[n − i] −∑2

j=1 a j(B−1)y[n − j].

The first accumulation term is then sampled by the sample and hold SHD0. After the

sample and hold SHD0 has finished sampling, its output is sampled by the sample and hold

SHD1. Once the sample and hold SHD1 has finished sampling, the first accumulation term

has been successfully stored and delayed by one computational cycle through the use of

sample and holds SHD0 and SHD1.

Next, the inverse of the accumulation term is computed using the operational transcon-

ductance amplifier, OTADA. It is calculated using the amplifier OTADA in an inverting con-

figuration utilizing equal sized feedback and input capacitors, CDA,FB and CDA,in. The size

of these capacitors is 500 f F. The input into the inverter is the delayed accumulation term,

which is stored in and is the output of the sample and hold SHD1, coupled through the input

capacitor CDA,in.

The inverted delayed accumulation term, which is the output of the inverting amplifier

OTADA, and the non-inverted delayed accumulation term, which is the output of the sam-

ple and hold SHD1, are fed as input into the two-position switch controlled by the Invert
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signal. For all the computational cycles except for the last one, the Invert signal is set to

ground. This signaling level means that the delayed accumulation term is to be inverted.

By selecting the inverted delayed accumulation term, the output of the two-position switch

controlled by the Invert signal is equal to
∑2

i=0 bi(B−1)x[n − i] +
∑2

j=1 a j(B−1)y[n − j]. This

output is the one expected by Eq. (5.4) for a second-order section IIR filter after the first

computational cycle.

Slightly before the start of the second computational cycle, the Reset signal is set to

ground. This signaling level means that the feedback summation term FBΣ(t) is set to the

output of the two-position switch controlled by the Invert signal. Presently, the output

of the two-position switch controlled by the Invert signal is equal to the inverted delayed

accumulation term; therefore, the output of the two-position switch controlled by the Reset

signal is also equal to the inverted delayed accumulation term.

At the start of the second computational cycle, the circular buffers BufferFF and BufferFB

advance their outputs to the next bit slice. Now, the second feedforward partial product,

which is equal to
∑2

i=0 bi(B−2)x[n − i], the second feedback partial product, which is equal

to
∑2

j=1 a j(B−2)y[n − j], and half of the feedback summation term FBΣ(t), which is equal

to
∑2

i=0 bi(B−1)x[n − i] +
∑2

j=1 a j(B−1)y[n − j], are summed together and inverted using the

amplifier OTAΣ. At this point, the accumulation term is equal to −(
∑2

i=0 bi(B−2)x[n − i]) −
(
∑2

j=1 a j(B−2)y[n − j]) − (
∑2

i=0 bi(B−1)x[n − i] +
∑2

j=1 a j(B−1)y[n − j])/2.

The ratio of the input capacitors Cin,i for i = 0, 1, 2, 3, 4, 5 and CFB to the feedback

capacitor CΣ determines the inverted gain of the input signal as referenced to Vre f . For

all input signals except the feedback summation term, the inverted gain is equal to −1;

therefore, the size of the input capacitors Cin,i for i = 0, 1, 2, 3, 4, 5 is equal to the size

of the feedback capacitor CΣ. To achieve the required inverted gain of −0.5 for the input

signal FBΣ(t), the size of its input capacitor CFB is equal to half the size of the feedback

capacitor CΣ. For this implementation, the size of CΣ is 500 f F; therefore, the size of Cin,i

for i = 0, 1, 2, 3, 4, 5 is 500 f F, and the size of CFB is 250 f F. Since no 250 f F capacitors
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are available on the RASP 2.8 FPAA, an equivalent capacitance is constructed from two

500 f F capacitors connected in series.

The rest of the second computational cycle is completed as before in the first one.

The current accumulation term is stored and delayed by the sample and holds SHD0 and

SHD1. The delayed accumulation term is inverted by the inverting amplifier OTADA, and the

inverted delayed accumulation term is passed through the two-position switch controlled

by the Invert signal into one of the inputs of the two-position switch controlled by the Reset

signal.

For the computation and for the scaled accumulation of the remaining partial products

until the last one, the computational flow remains unchanged from the second one. During

the last computational cycle, the hardware is computing the partial products associated with

the most significant bit, l = 0. At the start of the last computational cycle, the Invert signal

is set to the supply rail of 2.4V . This signaling level means that the non-inverted delayed

accumulation term is connected to one of the inputs of the two-position switch controlled by

the Reset signal. Remember, the Reset signal is still set to ground; therefore, the feedback

summation term FBΣ(t) is equal to the non-inverted delayed accumulation term. In other

words, FBΣ(t) is equal to −(
∑B−1

l=1 [
∑2

i=0 bilx[n − i]]2−l +
∑B−1

l=1 [
∑2

j=1 a jly[n − j]]2−l) or to

−(
∑B−1

l=1 {
∑2

i=0 bilx[n− i]+
∑2

j=1 a jly[n− j]}2−l). Although the sign of this term does not agree

with Eq. (5.4), this inconsistency is corrected when half of the feedback summation term is

inverted by the amplifier OTAΣ.

In a similar manner as before, the feedforward and feedback partial products associated

with the most significant bit l = 0 and half of the feedback summation term FBΣ(t) are

summed together using the amplifier OTAΣ. Now that the computation is complete, the

output of second-order section, which is the output of the amplifier OTAΣ, is sampled by

the sample and hold, SHout.

Once the output of the second-order section is sampled and before the start of the next

sample period, the output of the sample and hold SHout is sampled by one of the output
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sample and holds, SHFB,i for i = 0, 1. The sample and holds SHFB,i are used to store the

sampled and delayed outputs, y[n − 1] and y[n − 2], which are used in the computation of

the feedback partial products for next sample period.

5.4.3 Description of the Hardware Subcomponents

There are several components used to implement the proposed mixed-signal distributed

arithmetic second-order section filter. A description of each subcomponent and which

functions they are mapped to are given below. Note, some functions require more than

one subcomponent.

5.4.3.1 Implementation of the Sample and Hold Circuit

For any function that requires sampling a signal, either the input, the output, or the accu-

mulation term, a sample and hold circuit needs to be implemented. The functions that need

a sample and hold circuit are the functions enumerated 1, 3, and 5. For this research, a

relatively simple sample and hold circuit was chosen. This design only requires an OTA,

a capacitor, and a transmission gate. All of these components are available on the RASP

2.8 FPAA. However, the OTA required needs to be able to source 40µA, and the maximum

current that a standard RASP 2.8 FPAA OTA can source is 10µA. To overcome this limi-

tation, four standard RASP 2.8 FPAA OTAs are connected in parallel. In essence, an OTA

with transistor sizings that is four times that of the standard RASP 2.8 FPAA OTA was

constructed. These components are connected as illustrated in Figure 5.5.

As shown in Figure 5.5, the OTA is connected in a buffering configuration whose ref-

erence voltage is tied to the charge stored on the capacitor. This capacitor is connected to

the input through a single position switch. The functionality of the single position switch

is implemented using a transmission gate as shown in Figure 5.6.

To overcome the charge injection issues, the straight forward solution of using larger

capacitors was used. In this case, the size of the sample and hold circuit used in this imple-

mentation of a mixed-signal distributed arithmetic second-order section is 9pF. Although
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Figure 5.6. Component schematic of the 1-position switch.
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the RASP 2.8 FPAA does not have a 9pF capacitor, eighteen of the 500 f F capacitors are

connected in parallel to achieve the necessary capacitance. When used in the final SOS

implementation, the error is less than 1mV .

5.4.3.2 Implementation of the Feedforward Circular Buffer

A description of the hardware used to store the feedforward filter coefficients is described in

this section. This component is needed by function number 2 listed at the beginning of Sec-

tion 5.4.1 whose function is to sum the sampled input according the selected digital coeffi-

cient bit slice. This component is used to control which input samples, {x[n] x[n − 1] x[n − 2]},
are needed for the lth partial product in the DA computation of the output, y[n]. In other

words, this unit determines which input samples are needed to compute the summation
∑K−1

i=0 bilx[n − i] during the lth cycle of the DA computation. In this implementation for a

second-order section, the four most recent input samples are stored. Because this compo-

nent needs to control four input sources, four B-bit shift registers are needed. The shift out

of the preceding shift register is connected to the shift in of the next one. The shift registers

are connected in a circular fashion, which mean the shift out of the last unit is connected

to the shift in of the first one. The first shift register is initialized with zeros. The rest of

the shift registers are initialized in reverse feedforward filter coefficient order such that the

last unit is initialized with filter coefficient wb[0]. A block diagram for this component is

shown in Figure 5.7.

Although this unit could be implemented on the FPAA, it would be more reasonable to

implement this component on a digital exclusive prototyping platform such as an FPGA.

The functionality of this component could also be done on a microcontroller and a 4-bit

general purpose I/O port.

5.4.3.3 Implementation of the Feedback Circular Buffer

The feedback circular buffer is used to control which output samples, {y[n − 1] y[n − 2]},
are needed for the lth partial product in the DA computation of the output, y[n]. In other

words, this unit determines which output samples are needed to compute the summation
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Figure 5.7. Component schematic of the circular buffer for the feedforward filter coefficients.
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∑L−1
j=1 a jly[n − j] during the lth cycle of the DA computation. This component is needed by

function number 4. In this implementation for a second-order section, the two most recent

output samples are stored. Because this component needs to control two input sources, two

B-bit shift registers are needed. These components are connected just as they were in the

feedforward case. The shift registers are initialized in reverse feedback filter coefficient

order such that the first unit is initialized with wa[2] and the last unit is initialized with filter

coefficient wa[1]. A block diagram for this component is shown in Figure 5.8.

Circular

Buffer,

Feedback

Filter

Coefficients

(BufferFB) B-bit Shift Register

(initialized with wa[1])

B-bit Shift Register

(initialized with wa[2])

FB1

shift in

shift out

shift in

shift out

FB0

FB1

Clock

C
lo
c
k

FB0

Figure 5.8. Component schematic of the circular buffer for the feedback filter coefficients.

Although this unit could be implemented on the FPAA, it would be more reasonable to

implement this component on a digital exclusive prototyping platform such as an FPGA.

The functionality of this component could also be done on a microcontroller and a 2-bit

general purpose I/O port.

5.4.3.4 Implementation of the Two-position Switch

The two-position switch is used to select between two input signals dependent on the sig-

naling level of the control signal. This component is used for function numbers 2, 4, 7,

and 8. It is composed of two transmission gates connected in parallel. At all times, one

of the two transmission gates is transparent; however, only one transmission gate is trans-

parent at the same time. These transmission gates are controlled by a single control signal.
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One transmission gate is transparent when the control signal is set to the supply rail of

2.4V , and the other one is transparent when the control signal is set to ground. Since this

transmission gate is fully complementary, which is that it is composed of both NMOS and

PMOS transistors, the control signal and its inverse is needed to control the transparency

of the transmission gate. The control signal and its inverse is connected to the transmission

gates as shown in Figure 5.9.

C
o
n
tro
l

Control

Control

Control

Figure 5.9. Component schematic of the 2-position switch.

5.4.3.5 Implementation of the Operational Transconductance Amplifier OTAΣ

As mentioned earlier, the RASP 2.8 FPAA has operational transconductance amplifiers

available to use. However, the maximum current that each OTA can source is limited to

around 10µA. Since this OTA is connected to several components, it needs to be able

to provide around 260µA, which is more than 10µA. To achieve the required amperage,

twenty-six of the standard RASP 2.8 FPAA OTAs are connected in parallel. By connecting

the OTAs in this fashion, it has the same effect as constructing the standard RASP 2.8 FPAA

OTA out of transistors that are twenty-six times larger than originally specified.

5.4.3.6 Implementation of the Operational Transconductance Amplifier OTADA

For this amplifier, the ability to source around 40µA of current is required. Like before for

the amplifier OT AΣ, four of the standard RASP 2.8 FPAA OTAs are connected in parallel

to achieve the necessary amperage. By connecting the OTAs in this fashion, it has the same
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effect as constructing the standard RASP 2.8 FPAA OTA out of transistors that are four

times larger than originally specified.

5.4.4 Description of the Hardware Timing

To help follow the overall hardware timing of the proposed second-order section imple-

mentation, a timing diagram is shown in Figure 5.10. The distributed arithmetic operation

starts at the beginning of the sample period. In this case, this event is the rising edge of

the sample clock. Note in the implementation, no devices are driven by the sample clock;

however, all timing events are relative to this clock.

A signal called the bit clock, Clkbit, is used to clock individual DA computational cycles.

The duration of a computational cycle is equivalent to the period of the bit clock. For every

sample clock period, B computational cycles occur. Recall, B is the bit precision of the filter

coefficients. Therefore, the bit clock is B times the sample frequency. In the Figure 5.10,

the bit precision of the filter coefficients is four. Note, the bit clock and the sample clock

are in phase, and the rising edge of the first computational cycle is aligned with the rising

edge of the sample clock. The timing details for the other signals are given in the sections

below.

5.4.4.1 Timing of ClkFF,i for the Input Sample and Holds SHFF,i

Four sampling clocks, ClkFF,i for i = 0, 1, 2, 3, are used to control when each input sample

and hold, SHFF,i for i = 0, 1, 2, 3, samples the input signal, x(t). The sample and holds

SHFF,i for i = 0, 1, 2, 3 samples the input when their respective sampling clock ClkFF,i for

i = 0, 1, 2, 3 is high and holds when the sampling clock is low. In this implementation,

each sample and hold only samples once every four sample periods. The sampling clocks

ClkFF,i for i = 1, 2, 3 are the same as the sampling clock ClkFF,0 except that the rising edges

of ClkFF,i for i = 1, 2, 3 are separated from the rising edge of ClkFF,0 by i sample period(s).

The rising edges of ClkFF,i for i = 0, 1, 2, 3 occurs in phase with the rising edge of the

sample clock. The ClkFF,i for i = 0, 1, 2, 3 is high for a duration longer than the sampling
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Figure 5.10. Timing diagram for the proposed second-order section implementation using distributed
arithmetic.
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settling time and for a duration shorter than the sampling period. The sampling of the input

must be completed before the next sampling event minus its holding settling time. A timing

diagram of ClkFF,i for i = 0, 1, 2, 3 is shown in Figure 5.11.

x[n] x[n-2] x[n]x[n-1]

x[n-2] x[n] x[n-1]x[n-1]

x[n-2]x[n-2] x[n] x[n-1]

x[n] x[n-1] x[n-2]

x[n] sample

clock 0, ClkFF,0

x[n] sample

clock 1, ClkFF,1

x[n] sample

clock 2, ClkFF,2

x[n] sample

clock 3, ClkFF,3

Sample clock

Analog input

x[n] data 0

x[n] data 1

Newest sample Oldest sampleInput sampled

x[n] data 2

x[n] data 3

Bit clock, Clkbit

Analog output

sample

Figure 5.11. A time lapse diagram showing how the sampled input data changes.

Since the input samples, x[n − i] for i = −1, 0, 1, 2, are not sampled using a sample and

hold array configured like a serial shift register where the input of the ith sample and hold is

connected to the output of the (i−1)th one, the association of each sample and hold with the

input samples changes as new input data is collected. Figure 5.11 is a time lapse diagram

of these changing relationships.

When an input sample and hold first samples the input signal, this sample is labeled as
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x[n + 1]. Although this second-order section implementation is casual, processing using

this data does not begin until the start of the next sample period. This additional sample

period of latency is used to give the input sample and hold ample time to sample the input

signal and to not dedicate any computation time for sampling the input. Note, this sampling

method allows for higher computational rates. Since this input sample remains in its origi-

nal sample and hold, this sample becomes x[n] when the next sample period begins. After

i sample periods from the initial sampling event, the input sample stored in this sample and

hold is x[n − i + 1]. This process of temporal aging is used for all input sample and holds.

Other sampling approaches do exist. This method was selected because it minimizes

the number of sampling events and limits the amount of sampling error per input sample

due to a sampling event to a single instance rather than multiple ones.

5.4.4.2 Timing of ClkFB, j for the Output Sample and Holds SHFB, j

Two sampling clocks, ClkFB, j for j = 0, 1, are used to control when each output sample

and hold, SHFB, j for j = 0, 1, samples the output signal, y(t). The sample and holds SHFB, j

for j = 0, 1 samples the input when their respective sampling clock ClkFB, j for j = 0, 1 is

high and holds when the sampling clock is low. In this implementation, each sample and

hold only samples once every two sample periods. The sampling clock ClkFB,1 is the same

as the sampling clock ClkFB,0 except that the rising edge of ClkFB,1 is separated from the

rising edge of ClkFB,0 by one sample period(s).

ClkFB, j for j = 0, 1 can go high and begin sampling the output anytime during the last

computational cycle. For this implementation, the sampling clock ClkFB, j for j = 0, 1 goes

high slightly before SHout has finished sampling the output sample, y[n]. However, the

rising edge of ClkFB, j for j = 0, 1 should occur early enough that this switching event does

not affect the sampling of the output sample y[n] by SHout.

When the clock ClkFB, j for j = 0, 1 goes low and begins to hold the output signal,

this timing event is the more crucial one. Remember, the sample and holds SHFB, j for

j = 0, 1 are sampling the output of SHout and cannot finish sampling until SHout has finished
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sampling y[n] and its output has settled. Also, ClkFB, j for j = 0, 1 must remain high longer

than its sampling settling time. Therefore, the falling edge of ClkFB, j for j = 0, 1 cannot

occur for a period equivalent to the holding settling time of the sample and hold SHout

plus the sampling settling time of its sample and hold SHFB, j after the falling edge of the

sampling clock, Clkout, for SHout. In addition, the falling edge of ClkFB, j for j = 0, 1 must

occur before the next sampling event minus its holding settling time. A timing diagram of

ClkFB, j for j = 0, 1 is shown in Figure 5.12.

y[n] y[n-1] y[n] y[n-1] y[n]

y[n] y[n-1]y[n-1] y[n] y[n-1]

y[n] sample

clock 0, ClkFB,0

y[n] sample

clock 1, ClkFB,1

Sample clock

Analog input

y[n] data 0

y[n] data 1

Newest sample Oldest sampleOutput sampled

Analog output

sample

Output sample

clock, Clkout

Figure 5.12. A time lapse diagram showing how the sampled output data changes.

Since the output samples, y[n− j] for j = 1, 2, are not sampled using a sample and hold

array configured like a serial shift register, the association of each sample and hold with the

output samples changes as new output data is collected. Figure 5.12 is a time lapse diagram

of these changing relationships.

When an output sample and hold first samples the output signal, this sample is labeled

as y[n]. Unlike in the input sample case, the sampling of the output signal cannot be

delayed without consequence. If the use of this output sample was delayed by one sample
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period, then the difference equation for the output sample y[n] becomes
∑K−1

i=0 wb[i]x[n− i]+

∑L−1
j=1 wa[ j]y[n−( j+1)], which is not the same as the desired difference equation of Eq. (5.1)

for a second-order section filter. Because the temporal age of the output sample is relative

to when y[n] was sampled, the output sample y[n] must be used immediately at the start of

the next sample period as y[n − 1]. After j sample periods from the initial sampling event,

the output sample stored in this sample and hold is y[n− j]. This process of temporal aging

is used for all output sample and holds S HFB, j for j = 0, 1. Like in the input sampling case,

this method was selected because it minimizes the number of sampling events and limits

the amount of sampling error per output sample y[n− j] for j = 0, 1 due to a sampling event

to a single instance rather than multiple ones.

5.4.4.3 Timing of FFi for the Circular Buffer BufferFF

The signals FFi for i = 0, 1, 2, 3 of the circular buffer BufferFF are used to control which

input samples x[n − i] for i = 0, 1, 2, 3 are required for computing the current feedforward

partial product. As mentioned earlier, the feedforward partial product associated with the

least significant bit slice, which is the concatenation of the feedforward filter coefficients

LSBs, is computed during the first computational cycle, while the feedforward partial prod-

uct associated with the most significant bit slice, which is the concatenation of the feedfor-

ward filter coefficients MSBs, is computed during the last computational cycle. Each bit

slice is composed of four bits. One bit for each input sample and hold. Note for a second-

order section filter, only three of the input sample and holds are required for computing

the output sample y[n]; therefore, the bit associated with the input sample and hold that is

sampling the input signal x(t) is set to zero. Also notice in Figure 5.10, the feedforward

filter coefficients plus a zero are being rotated in a circular fashion to match the appropriate

input sample and hold with the correct feedforward filter coefficient. Remember in this

implementation, the feedforward filter coefficients are moved to the correct input samples

rather than the other way around.
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For the timing of the signals FFi for i = 0, 1, 2, 3, a new feedforward bit slice is out-

putted on these signals at the start of every computational cycle. At the beginning of the

DA computation, FFi for i = 0, 1, 2, 3 outputs the feedforward bit slice associated with the

least significant bit, l = B − 1, at the rising edge of the sample clock. Each subsequent

feedforward bit slice is outputted on signals FFi for i = 0, 1, 2, 3 at the rising edge of the

bit clock Clkbit. The feedforward bit slice associated with the most significant bit, l = 0,

is outputted on these signals at the start of the last, Bth, computational cycle or B − 1 bit

periods after the rising edge of the sample clock.

5.4.4.4 Timing of FB j for the Circular Buffer BufferFB

The signals FB j for j = 0, 1 of the circular buffer BufferFB are used to control which output

samples y[n − j] for j = 0, 1 are required for computing the current feedback partial prod-

uct. As mentioned earlier, the feedback partial product associated with the least significant

bit slice, which is the concatenation of the feedback filter coefficients LSBs, is computed

during the first computational cycle, while the feedback partial product associated with

the most significant bit slice, which is the concatenation of the feedback filter coefficients

MSBs, is computed during the last computational cycle. Each bit slice is composed of two

bits. One bit for each output sample and hold. Notice in Figure 5.10, the feedback filter

coefficients are being rotated in a circular fashion to match the appropriate output sample

and hold with the correct feedback filter coefficient. Remember in this implementation, the

feedback filter coefficients are moved to the correct output samples rather than the other

way around.

For the timing of the signals FB j for j = 0, 1, a new feedback bit slice is outputted on

these signals at the start of every computational cycle. At the beginning of the DA compu-

tation, FB j for j = 0, 1 outputs the feedback bit slice associated with the least significant

bit, l = B− 1, at the rising edge of the sample clock. Each subsequent feedforward bit slice

is outputted on signals FB j for j = 0, 1 at the rising edge of the bit clock Clkbit. The feed-

back bit slice associated with the most significant bit, l = 0, is outputted on these signals at
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the start of the last, Bth, computational cycle or B− 1 bit periods after the rising edge of the

sample clock.

5.4.4.5 Timing of ClkD0 for the Sample and Hold SHD0

The sampling clock ClkD0 is used to control when the sample and hold SHD0 samples the

output signal y(t). The accumulation term is sampled when ClkD0 is high, and the sampled

voltage is held in the sample and hold SHD0 when ClkD0 is low.

The sample and hold SHD0 is the first sample and hold in a pair of sample and holds

that are connected in series. The purpose of these sample and holds is to store and to delay

the accumulation term. Two sample and holds with non-overlapping sampling phases are

needed to prevent transparency in the distributed arithmetic feedback path. If this path

was transparent, then an unintended feedback in the DA computation would occur, and the

accumulation term would grow uncontrollably.

To store and to delay the accumulation term properly, both the sample and holds must

be allowed to sample its input in the proper sequence within one computational cycle. To

allow SHD1 enough time to sample, SHD0 begins sampling its input immediately. In other

words, the rising edge of ClkD0 occurs at the same time as the rising edge of the bit clock

Clkbit. Then, the sample and hold SHD0 must sample its input long enough to allow its

output to settle. Also, SHD0 must finish sampling early enough to allow SHD1 to wait for at

least the holding settling time of SHD0 before sampling its input, to allow SHD1 to sample

its input, and to allow SHD1 to settle its output after entering its holding phase. In other

words, the falling edge of ClkD0 occurs at least a period of the sampling settling time for

SHD0 after the rising edge of ClkD0, occurs at least a period of the holding settling time

for its sample and hold before the rising edge of ClkD1, and occurs at least a period of

the holding settling time for its sample and hold plus the sampling and holding settling

times for SHD1 before the rising edge of Clkbit. This timing pattern for ClkD0 repeats every

computational cycle.
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5.4.4.6 Timing of ClkD1 for the Sample and Hold SHD1

The sampling clock ClkD1 is used to control when the sample and hold SHD1 samples the

output signal y(t). The output signal y(t) is sampled when ClkD1 is high, and the sampled

voltage held in the sample and hold SHD1 when ClkD1 is low.

The sample and hold SHD1 is the second sample and hold in the pair that store and

delay the accumulation term. To prevent transparency in the DA feedback path, SHD1

cannot sample at the same time as SHD0 and can only begin to sample the output of SHD0

after SHD0 has finished sampling the accumulation term plus some holding settling time of

SHD0. This requirement means that the rising edge of the sampling clock ClkD1 is at least

for a period of the holding settling time of SHD0 after the falling edge of ClkD0. Also, the

sample and hold SHD1 must finish sampling for a period of its holding settling time before

the start of the next computational cycle, and the sampling phase of SHD1 must be long

enough to allow its output to settle. This requirement means that the falling edge of ClkD1

occurs at least a period of the sampling settling time for SHD1 after the rising edge of ClkD1

and occurs at least a period of the holding settling time for SHD1 before the rising edge of

Clkbit. This timing pattern for ClkD1 repeats every computational cycle.

5.4.4.7 Timing of Clkout for the Sample and Hold SHout

The sampling clock Clkout is used to control when the sample and hold SHout samples the

output signal y(t). This sampled voltage is the output sample y[n] and is used by the sample

and holds SHFB, j for j = 0, 1 to generate the delayed output samples, y[n − ( j + 1)] for

j = 0, 1. The output signal y(t) is sampled when Clkout is high, and the sampled voltage

held in the sample and hold SHout when Clkout is low.

The periodicity of the sampling clock Clkout is one period of the sample clock. The

sampling clock Clkout is active high and is sampling the output signal y(t) only during the

last, Bth, computational cycle. For all other computational cycles, Clkout is low. The rising

edge of the sampling clock Clkout is aligned with the rising edge of the Bth computational

cycle. The Bth computational cycle begins B − 1 bit periods after the start of the DA
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computation, which is the rising edge of the sample clock. Clkout must remain high long

enough such that the output of the amplifier OTAΣ has become settled after the last bit

slice has been shifted into the computation of the last feedforward and feedback partial

products by the circular buffers BufferFF and BufferFB. The sample and hold SHout must

finish sampling the output signal y(t) before the sample and hold SHD1 begins sampling

the output of SHD0 and must allow enough time for the holding settling time of its output.

Therefore, the falling edge of Clkout must occur for a period of the holding settling time of

SHout before the rising edge of SHD1. The sample and hold SHout must be in its holding

phase before SHD1 begins sampling because the delayed accumulation term is not used

during the last DA computational cycle for the computation of the output sample y[n].

5.4.4.8 Timing of the Invert Signal

The Invert signal is used to control a two-position switch that connects the active low input

of the two-position switch controlled by the Reset signal to the inverted delayed accumula-

tion term when the Invert signal is low and to the non-inverted delayed accumulation term

when the Invert signal is high.

The Invert signal has a periodicity of one sample period. The Invert signal is active high

and is not inverting the delayed accumulation term only during the last, Bth, computational

cycle. For all other computational cycles, the Invert signal is low. This non-inversion of the

delayed accumulation term is needed during the last DA computational cycle to generate

the correct output for a DA-based filter using two’s complement digital filter coefficients.

The rising edge of the Invert signal is aligned with the rising edge of the Bth compu-

tational cycle. The delayed accumulation term must remain non-inverted until the output

signal y(t) has been sampled by SHout plus its holding settling time. Therefore, the falling

edge of the Invert signal must occur at least a holding settling time of the sample and hold

SHout after the falling edge of Clkout.
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5.4.4.9 Timing of the Reset Signal

The Reset signal is used to control a two-position switch that connects the feedback sum-

mation term FBΣ(t) to the reference voltage Vre f when the Reset signal is low and to the

output of the two-position switch controlled by the Invert signal when the Reset signal

is high. The Bth computational cycle begins B − 1 bit periods after the start of the DA

computation, which is the rising edge of the sample clock.

The Reset signal has a periodicity of one sample period. The rising edge of the Reset

signal can occur a holding settling time of the sample and hold SHout after the falling edge

of the Clkout during the last computational cycle. By setting the Reset signal to high before

the start of the next sample period, this action has no effect on the current output signal

because it has already been sampled by SHout, and FBΣ(t) must be set to Vre f for the next

sample period. During most of the first computational cycle of the next sample period,

the Reset signal continues to be high. The feedback summation term FBΣ(t) must remain

connected to the reference voltage Vre f until the accumulation term has been sampled by

the sample and hold SHD0 for the first phase of storing and of delaying the accumulation

term and before the start of the next computational cycle. The falling edge of the Reset

signal must occur at least a holding settling time of the sample and hold SHD0 after the

falling edge of ClkD0 yet before the next rising edge of the bit clock.

5.5 Analysis of the Computational Error Sources

For this implementation, the gain and offset errors are determined by the accuracy of the

DA computation. If the error at the addition stage is due to the sampled input errors in the

sample and hold circuits and the mismatch errors between the input capacitors, Cin,i (for

i = 0, 1, 2, ..., 5), is assumed to be negligible, then the gain/offset errors and the noise in the

data paths are the main sources of error. In this architecture, the inverting amplifiers, OTAΣ

and OTADA, are sources of gain and offset errors, and all the sample-and-hold circuits are

sources of offset error. In addition, the mismatch between CFB and CΣ as well as between
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CDA,FB and CDA,in are sources of gain error. In this analysis, the effects of gain, offset, and

random errors in the system were analyzed.

5.5.1 Gain Error

In Section 4.4, an analysis of the error of the division by two computational circuit was

performed; however, this analysis was for an FIR filter, and not for a second-order section.

The key difference in the analysis for a second-order section is its analysis will contain

two gain error sources rather than the one error source in the FIR case. A gain error is

generated in both the feedforward and feedback signal paths. As before, the divide by

two computational circuit is the source of this error. In this section, the gain error for the

feedforward signal path is denoted as ∆ f f , and the gain error for the feedback signal path

is designated as ∆ f b. The effects of ∆ f f and ∆ f b on the output of the DA computation for a

second-order section, y[n], are modelled by

y[n] = −


K−1∑

i=0

bi0x[n − i]

 +

B−1∑

l=1


K−1∑

i=0

bilx[n − i]

 (0.5 + ∆ f f )l

−


L−1∑

j=0

a j0y[n − j]

 +

B−1∑

l=1


L−1∑

j=0

a jly[n − j]

 (0.5 + ∆ f b)l. (5.9)

For simplification, the term
∑K−1

i=0 bilx[n− i] is set to α for all l, and the term
∑L−1

j=0 a jly[n− j]

is set to β for all l. Therefore, Eq. (5.4) can be written as

y[n] = −α +

B−1∑

l=1

α 0.5l − β +

B−1∑

l=1

β 0.5l, (5.10)

and Eq. (5.9) can be written as

y[n] = −α +

B−1∑

l=1

α (0.5 + ∆ f f )l − β +

B−1∑

l=1

β (0.5 + ∆ f b)l. (5.11)
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The output error caused by ∆ f f and ∆ f b can be found by computing the difference of

Eq. (5.10) and Eq. (5.11). Now, the output error, ε, can be expressed as

ε =


B−1∑

l=1

α (0.5 + ∆ f f )l −
B−1∑

l=1

α 0.5l

 +


B−1∑

l=1

β (0.5 + ∆ f b)l −
B−1∑

l=1

β 0.5l



=

(
α

1 − (0.5 + ∆ f f )B

1 − (0.5 + ∆ f f )
− α1 − 0.5B

1 − 0.5

)
+

(
β

1 − (0.5 + ∆ f b)B

1 − (0.5 + ∆ f b)
− β1 − 0.5B

1 − 0.5

)

= α

(
1 − (0.5 + ∆ f f )B

0.5 − ∆ f f
− 1 − 0.5B

0.5

)
+ β

(
1 − (0.5 + ∆ f b)B

0.5 − ∆ f b
− 1 − 0.5B

0.5

)
. (5.12)

Despite this simplification, Eq. (5.12) is still not very intuitive. However if the worst case

scenario is considered, which in many cases is the primary design concern, the output error

due to gain error is maximized when β is equal to α. Eq. (5.12) can be further simplified by

setting a new varilabe, ∆di f f , to be the difference of the two gain errors from the feedforward

and feedback data paths, ∆ f f and ∆ f b, or in other words, ∆di f f is equal to ∆ f f − ∆ f b. With

this new variable, ∆ f b can be rewritten as ∆ f f − ∆di f f . If ∆di f f is an order of magnitude

smaller than ∆ f f , then ∆ f b is equal to ∆ f f . With this simplification and assumption, the

output error ε can be expressed as

ε = 2α
(
1 − (0.5 + ∆ f f )B

0.5 − ∆ f f
− 1 − 0.5B

0.5

)
. (5.13)

A plot of the output error due to gain error normalized by α for varying values of ∆ f f

and B is given in Figure 5.13. Since this system uses digital filter coefficients to generate

an analog output from sampled analog data, the output error due to quantization is also

provided. The intersection of output error (due to gain error) and quantization error curves

is the minimum achievable output error of the proposed system and is used to determine

the precision of an equivalent digital system. For example when ∆ f f = 2−11, the two curves

intersected at ε/α = 0.0037 and B = 7. This intersection point is the minimum error when

∆ = 2−11 and that the proposed system is equivalent to using a 7-bit digital DA. Also note

that as B became large, ε/α approached a limit which is equal to 2∆ f f /(0.5 − ∆ f f ).
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Figure 5.13. Computational error, ε/α, of the system due to quantization error and gain non-ideality,
∆ f f .

5.5.2 Offset Feedback Error

Another source of error is the offset error. As mentioned in the previous section, a second-

order section has two computational feedback paths related to DA, one each for the feedfor-

ward and for the feedback inner product computational paths; therefore, it has two sources

of offset error. The offset error that is generated by computing the inner product associated

with the feedforward filter coefficients is modelled as a constant error, δ f f , added to each

lth partial product,
∑K−1

i=0 bilx[n − i], and the offset error that is generated by computing the

inner product associated with the feedback filter coefficients is modelled as a constant error,

δ f b, added to each jth partial product,
∑L−1

j=0 a jly[n − j]. When considering these sources of

error, the output, y[n], can be written as

y[n] = −
δ f f +

K−1∑

i=0

bi0x[n − i]

 +

B−1∑

l=1

2−l

δ f f +

K−1∑

i=0

bilx[n − i]



−
δ f b +

L−1∑

j=0

a j0y[n − j]

 +

B−1∑

l=1

2−l

δ f b +

L−1∑

j=0

a jly[n − j]

 . (5.14)
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After distributing
∑B−1

i=1 2−l, grouping the δ f f ’s into one term, and grouping the δ f b’s into

a single term, the error due to the offset can be written as the difference of two geometric

series summations.

erroroffset =

(
δ f f

1 − 0.5B

1 − 0.5
− 2δ f f

)
+

(
δ f b

1 − 0.5B

1 − 0.5
− 2δ f b

)

= δ f f · 2−(B−1) + δ f b · 2−(B−1)

=
(
δ f f + δ f b

)
· 2−(B−1) (5.15)

The value of δ f b has as equal a likelihood of being equal to α as to being equal to −α due

to the manufacturing variances for fabricating CMOS circuits. Rather than expressing the

error in terms of δ f f or δ f b, Eq. (5.15) can be expressed in terms of a new variable called

δavg as

erroroffset = 2δavg2−(B−1) = δavg2−(B−2), (5.16)

where δavg is equal to the average of the offset error for the two computational paths, or in

other words, δavg is equal to (δ f f + δ f b)/2. There is noticeable similarity between Eq. (4.6)

and Eq. (5.16). Assuming δ is equal to δavg, the most notable difference is that the output

error for the second-order section is twice as large when compared to the FIR filtering

case. This result is to be expected because there are two sources of error, which are the DA

feedback paths for the computation of the feedforward and of the feedback inner products,

in the case of a second-order section while there is only one source of error, which is just

for the feedforward inner product DA computational path, for an FIR filter.

As seen in the FIR when B increases, the offset error in the feedback loops decreases.

Again, this result is a byproduct of how DA handles two’s complement numbers. In DA

for the computation of each inner product, the partial product associated with the most

significant bit or the sign bit is subtracted rather than added as is the case for all the other

partial products. In other words for the DA mechanization of the feedforward inner product,

the partial product,
∑K−1

i=0 bi0x[n−i], is deducted rather than accumulated into the final result.

Similarly for the DA mechanization of the feedback inner product, the partial product,
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∑L−1
j=0 a j0y[n − j], is subtracted rather than added to the output. This systematic attenuation

of the offset error is significant when the B is large. For example when B = 8 and δavg =

100mV , the offset error is 1.5625mV , which is a reduction of 64x.

5.5.3 Random Feedback Error

As before for the FIR filtering case, the random error is assumed to be Gaussian and is

represented by S l. The random variable S l is added to the summation of weights at each

lth iteration, and all S l’s are independent and identically distributed. With the these sources

of random error added to the feedback paths for both the feedforward and feedback DA

computations, the output, y[n], can be expressed as

y[n] = −
S 0 +

K−1∑

i=0

bi0x[n − i]

 +

B−1∑

l=1

2−l

S l +

K−1∑

i=0

bilx[n − i]



−
S 0 +

L−1∑

j=0

a j0y[n − j]

 +

B−1∑

l=1

2−l

S l +

L−1∑

j=0

a jly[n − j]

 . (5.17)

Once the term
∑B−1

l=1 2−l is distributed and the S ′l s are collected into one summation, the

mean and variance of y[n] can be written as µY = 2µS
1−0.5B

1−0.5 − 4µS = 4µS ([1 − 0.5B] − 1)

and σ2
Y = 2σ2

S
1−0.25B

1−0.25 , respectively. As B approaches infinity, the mean of the random error

approaches zero, and the maximum variance of the random error is 8
3σ

2.

5.6 FPAA Results

The filtering structure detailed in the previous section are simulated using the WinSpice

simulation tool. WinSpice uses the EKV model to describe the behavior of the individual

transistors. This model provides a better model of subthreshold behavior than other models.

This aspect of the WinSpice simulation tool is critical because the devices used in the RASP

2.8 FPAA are typically operated in subthreshold.

To demonstrate the capability of the proposed second-order section filter implementa-

tion, it was configured as a low pass filter. The feedforward filter coefficients, [b0b1b2],

were set to [0.5 0.25 0.125], and the feedback filter coefficients, [a0a1a2], were set to [1
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Figure 5.14. The transient response of the DA-based second-order section when configured as a low–
pass filter for an input frequency of 558.036Hz at a sampling rate of 35.714kHz.

-0.25 -0.125]. These coefficients were quantized to four bits of precision. The sampling

rate was set to 35.714kHz, and the reference voltage, Vre f , was set to 1.2V or at the mid-

point between ground and the supply rail of 2.4V . The provided input to the system was

a sinusoid with a magnitude of 0.15V and no DC offset. This magnitude was selected to

avoid generating a voltage that either exceeded the supply rail or fell below ground.

Two types of results were collected. They are the output transient responses and the

magnitude and phase response.

The output transient responses are presented first. Figure 5.14 is the transient response

of the low-pass filter for an input frequency of 558.036Hz. The ideal transient response is

in blue, and the observed result is in green. As can be seen from the figure, the ideal and the

observed responses are nearly indistinguishable from one another. The average magnitude

difference between the two responses was slightly more than 9mV .

Figure 5.15 is the transient response of the low-pass filter for an input frequency of
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Figure 5.15. The transient response of the DA-based second-order section when configured as a low–
pass filter for an input frequency of 17.578kHz at a sampling rate of 35.714kHz.

17.578kHz. The earlier response was used to illustrate the transient response at low fre-

quencies where this response is used to illustrate the transient response at high frequencies,

in particular close to the Nyquist sampling rate. Like before, the ideal transient response is

in blue, and the observed result is in green. As can be seen from the figure, the ideal and

the observed responses are again nearly indistinguishable from one another. The average

magnitude difference between the two responses was slightly more than 21mV .

The next two figures are the magnitude and phase response. These figures were gen-

erated using the transient responses of sixty-four different frequencies spaced evenly from

zero to sixty-three over sixty-fourths the Nyquist frequency. Figure 5.16 is the magnitude

response of the low-pass filter. The ideal response is in blue, and the observed result is in

green. Overall, the observed magnitude response is relatively close to the ideal one. The

maximum difference in magnitude between the ideal and the observed responses is slightly

more than four tenths of a decibel.
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Figure 5.16. The magnitude response of the DA-based second-order section when configured as a low–
pass filter.

Figure 5.17 is the phase response of the low-pass filter. As before, the ideal response

is in blue, and the observed result is in green. Overall, the observed phase response is

relatively close to the ideal one. The maximum phase difference between the ideal and the

observed responses is less than five and a half degrees.

5.7 Summary

The implementation of a second-order section filter using distributed arithmetic was suc-

cessfully accomplished. This implementation is targeted for use on a field-programmable

analog array (FPAA), in particular the RASP 2.8 FPAA, in conjunction with an FPGA or a

microcontroller. The results were collected using the WinSpice simulation software. Using

this software, the transient responses of a low pass filter for sixty-four frequencies were col-

lected. These transient responses were then analyzed and utilized to generate a sixty-four

point magnitude and phase response. When comparing the observed magnitude response

with the ideal one, the result was within five tenths of a decibel. These results showed that a
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Figure 5.17. The phase response of the DA-based second-order section when configured as a low-pass
filter.

second-order section using distributed arithmetic was successfully created from the RASP

2.8 FPAA components.

5.8 Contributions

In this chapter, a reprogrammable mixed-signal second-order section was proposed and de-

veloped. The issues addressed by the proposed reprogrammable mixed-signal second-order

section are the lack of a compact reprogrammable filtering structure, the imprecise feed-

back and feedforward filter coefficients, the inconsistent sampling of the input and output

data, and the corruption of the input and output samples. The following contributions were

made to address these issues.

1. A reprogrammable mixed-signal second-order section was proposed and developed

to address the issues of the lack of a compact reprogrammable filtering structure, the

imprecise feedback and feedforward filter coefficients, the inconsistent sampling of
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the input and output data, and the corruption of the input and output samples.

2. Distributed arithmetic and digital registers were used to address the issue of a lack

of a compact reprogrammable filtering structure for a reprogrammable mixed-signal

second-order section. A combination of distributed arithmetic and digital registers

were used to construct a compact reprogrammable mixed-signal second-order sec-

tion.

3. Digital registers were used to address the issue of imprecise feedback and feedfor-

ward filter coefficients for a reprogrammable mixed-signal second-order section. The

digital registers were used to precisely reprogram the filter coefficients.

4. Independently clocked sample and hold circuits and a circular buffer of digital regis-

ters were used to address the issues of inconsistent sampling of the input and output

data and of the corruption of the input and output samples for a reprogrammable

mixed-signal second-order section. The independently clocked sample and hold cir-

cuits and the circular buffer of digital registers were used to consistently sample the

input and output data and to minimize the corruption of the input and output samples.

5. An analysis of potential error sources generated by using analog components was per-

formed to determine the effects that these analog components have on the proposed

reprogrammable mixed-signal second-order section. Deduced from this analysis, a

guideline was generated of where to focus the design effort for the proposed repro-

grammable mixed-signal second-order section. The guideline is to use most of the

design effort on minimizing the variance of random errors sources and maximizing

the precision of the amplifiers used.
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CHAPTER 6

CONCLUSIONS, CONTRIBUTIONS AND DIRECTIONS FOR
FUTURE RESEARCH

The conclusions and contributions of this research are given in the first two sections. In

addition, directions for future research are given in the last section of this chapter.

6.1 Conclusions

When computational resources are limited in particular multipliers, distributed arithmetic

(DA) is used in lieu of the typical multiplier-based filtering structures. This advantage in

terms of computational resources is further extended when the bit precision of the filter

is high. However due to the construction of the memory tables used for distributed arith-

metic, it is not well suited for adaptive applications. The bottleneck when using DA for an

adaptive filter is updating the memory table. Several attempts have been done to accelerate

the process of updating the memory. Although these approaches do reduce the amount of

processing necessary to update the memory, this reduction is gained at the expense of ad-

ditional memory usage and of convergence speed. A more desirable solution is to develop

a new approach for updating the memory table efficiently without using additional mem-

ory resources and compromising the convergence rate. In this thesis, such an approach is

proposed and developed.

To develop an adaptive distributed arithmetic filter with a convergence rate that is not

compromised, the memory table must be fully updated, and to realize that for an adaptive

distributed arithmetic filter the memory table does not have to be composed of the com-

binations of the filter coefficients and be addressed by concatenating bits of the input data

as in a traditional distributed arithmetic filtering structure. The memory table instead can

composed of the combinations of the input samples and can be addressed by concatenating

bits of the filter coefficients.
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For an adaptive filter, the contents of the memory table must be updated regardless

if the memory table is based on the filter coefficients or based on the input samples. In

this research, an efficient method for fully updating a memory table that is composed of

the combinations of the input samples and that is addressed by concatenating bits of the

filter coefficients was proposed and developed. The proposed update method is based on

exploiting the temporal locality of the stored data, which is a combination of the input sam-

ples that is determined by its memory address, and subexpression sharing. The proposed

update method is possible because the data set, which is composed of the input samples,

that the memory table is constructed from changes slowly. In other words, only the newest

input sample needs to be added to the data set, and the oldest input sample needs to be

removed from the data set. The proposed update method reduced the computational work-

load for updating the memory table by about k/2−1 over brute-force and required no addi-

tional memory resources. This type of distributed arithmetic that uses the proposed update

method is called conjugate distributed arithmetic (CDA). This type of update method is not

applicable to a memory table composed of the combinations of the filter coefficients and

addressed by concatenating bits of the input samples because the entire data set, which is

composed of the filter coefficients, changes from sample to sample because of the adaptive

nature of the filter.

The performance of CDA was compared against a traditional multiplier based approach

and against sliding-block distributed arithmetic (SBDA), which is the only other adaptive

distributed arithmetic approach that addresses the same issues as CDA. When CDA is com-

pared against a traditional multiplier based approach, the following conclusions were de-

duced. The throughput of CDA remained relatively constant as the filter order increased

while the throughput of a traditional multiplier based approach decreased quadratically

with increasing filter order. Also, a CDA adaptive filter can use up to 3.3 times fewer logic

elements than a traditional multiplier based adaptive filter to achieve a certain throughput

and uses the same amount of memory as a non-adaptive distributed arithmetic FIR filter.
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When CDA is compared against SBDA, the following conclusions were deduced. CDA

uses 1
bK/kc+1 less memory than SBDA, and this advantage is significant when bK/kc is small.

However, when bK/kc is large, this advantage is offset by an increase in the number of

additions necessary for CDA over SBDA. Although in some situations, CDA uses less

adders than SBDA when Bh

(bK/kc−1)·(2k−1−1) > 1.

In addition to developing a new type of adaptive distributed arithmetic called CDA, the

only other type of adaptive distributed arithmetic that addressed the same issues as CDA

called SBDA was modified to reduce the memory usage and to reduce the computational

workload. SBDA was modified to encode the memory tables using offset binary coding

(OBC). However, the computational workload for updating the memory table remained

unchanged from the non encoded case for the same filter length. By modifying the value

the memory table is initialized, the computational workload for updating the memory table

is reduced for most filtering configurations. This modification of SBDA to encode the

memory tables using OBC and to initialize the memory table with the initial condition

instead of zero as originally proposed in SBDA is called SBDA-OBC. When SBDA-OBC

is compared with SBDA, the following conclusions were deduced. SBDA-OBC requires

less memory than SBDA. The maximum memory usage advantage of SBDA-OBC over

SBDA is approximately half, and this situation occurs when the size of the sub-filter is

large. In terms of the computational workload, SBDA-OBC is most advantageous for large

sub-filters and when the filter is split into few sub-filters. In this case, the computational

workload is reduced almost in half.

Filters can also be constructed from analog components. Often for lower precision

computations, analog circuits use less power and less chip area than their digital counter-

parts. However even with these advantages, digital components are often used because of

their ease of reprogrammability. Achieving such reprogrammability with analog circuits is

possible, but comes at the expense of additional chip area. This increase often eliminates

the area advantage of using analog circuits over digital ones.

129



When wide linear phase is desired, a couple typical approaches exist for constructing

an analog filter with wide linear phase. However, each approach has it own set of issues.

A common issue among these approaches is the lack of reprogrammability or the lack of a

compact structure to provide reprogrammability. When using an FIR filtering approach in

the analog domain to generate a filtering structure with wide linear phase, a couple issues

exist. One difficulty is obtaining symmetric and precise filter coefficients. The other issues

are inconsistent sampling of the input signal and the corruption of the stored input data

samples.

In this research, a reprogrammable mixed-signal distributed arithmetic FIR filter is pro-

posed to address the issues with reprogrammable analog FIR filters of constructing com-

pact reprogrammable filtering structures, non-symmetric and imprecise filter coefficients,

inconsistent sampling of the input data, and input sample data corruption. These issues are

addressed by using a combination of distributed arithmetic, digital storage elements, and

epots, which are compact, reprogrammable, and precise voltage references.

The issue of constructing compact reprogrammable filtering structures is addressed by

using a combination of distributed arithmetic and epot analog storage elements. By using

a distributed arithmetic filtering structure in the analog domain, the additional analog com-

ponents needed to make the filter reprogrammable is compressed into a few components.

These additional analog components needed for the distributed arithmetic computational

feedback path is reused for every bit instead of being dedicated to a single bit. In other

words, the amount of hardware needed to support reprogrammability is compressed from

multiple bits into a single bit. The full bit precision of the computation is achieved in DA

by computing the output sample in a bit-serial fashion. By compressing the hardware using

distributed arithmetic, the potential amount of chip area saved could be significant, up to a

factor of the bit precision of the filter.

When using the proposed FIR filtering structure, compact and precise reprogrammable

130



analog storage elements are needed for the filter coefficients to address the issues of re-

programmability and of non-symmetric and imprecise filter coefficients. Note, the degree

of symmetry achieved is determined by the achievable precision of the filter coefficients;

therefore, the more precise the filter coefficients can be programmed then the higher degree

of symmetry that is present in the filter coefficients. To address this requirement, epots

are used. Epots are reprogrammable analog voltage references [41]. For the compact and

precise epot needed for this application, the epots in [42] were used. The compactness and

precision of these epots were achieved by using floating-gates.

To address the issues of inconsistent input data sampling and input sample data cor-

ruption, digital registers are used to stored the input data. By storing the data in digital

storage elements such as flip-flops, the volatility of the stored input samples is eliminated.

By eliminating this volatility and a well designed clock distribution tree, the input data is

consistently sampled, and the data storage elements can be cascaded without concern for

data corruption. This ability to cascade many input data storage elements together allows

for the construct of high order FIR filter using the proposed mixed-signal filtering structure.

To demonstrate the reprogrammability of the proposed mixed-signal FIR filter, the fil-

tering structure was successful reprogrammed as a low-pass, band-pass, and comb filter.

This success is illustrated by frequency responses that are very close to the ideal ones.

These frequency responses also illustrate the high degree of precision the epots were pro-

grammed. The epots were programmed with enough accuracy that the phase response,

which are very sensitive to imprecisely programmed filter coefficients, of the programmed

filters are nearly linear. The measured spurious-free-dynamic-range (SFDR), which is the

difference in amplitude between the input frequency and the largest non-input frequency

components, of an 8-bit FIR filter is 43dB, which is close to the expected bit resolution for

eight bits.

An analysis of potential error sources generated by using analog components was per-

formed to determine the effects that these analog components have on the proposed FIR
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filter. The sources of error considered were gain error in the signal path, offset error in the

signal path and weights, and noise in the signal path and weights. Each source of error

was analyzed independently of one another. The key conclusions of these analyses are that

offset error sources are attenuated by the distributed arithmetic computational process, that

the variance of random error sources are amplified by the distributed arithmetic computa-

tional process, and that the gain error in the signal path determines the bit precision of the

proposed filter given a certain digital bit precision. From a design standpoint, these con-

clusions mean that most of the design effort should be placed on minimizing the variance

of random errors sources and maximizing the precision of the amplifiers used.

In addition to the proposed mixed-signal distributed arithmetic FIR filter, a mixed-

signal distributed arithmetic second-order section (SOS) was proposed and developed.

Second-order sections are used as the building blocks for higher order infinite impulse re-

sponse (IIR) filters. IIR filters are better suited than FIR filters for applications that require

a steep roll-off in the frequency response. The type of issues with an analog second-order

section filter are similar to those of an analog FIR filter, which are the lack of a compact re-

programmable filtering structure, the imprecise filter coefficients, the inconsistent sampling

of the data, and the corruption of the data samples. The key difference between the two is

that a feedback path is present in addition to the feedforward path, which is also present in

an FIR filter. The feedback path is constructed in a similar manner to the feedforward path

except that it uses the output samples instead of the input samples.

In the proposed reprogrammable mixed-signal distributed arithmetic second-order sec-

tion filter, the typical issues associated with reprogrammable analog IIR filters, which are

the lack of a compact reprogrammable filtering structure, the imprecise feedback and feed-

forward filter coefficients, the inconsistent sampling of the input and output data, and the

corruption of the input and output samples, are addressed. These issues are addressed using

a combination of distributed arithmetic and digital storage elements.
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The issue of reprogrammability is addressed by using distributed arithmetic and by us-

ing digital storage elements. By using a distributed arithmetic filtering structure in the ana-

log domain, the amount of hardware needed to support reprogrammability is compressed

from multiple bits into a single bit. By compressing the hardware using distributed arith-

metic, the potential amount of chip area saved could be significant, up to a factor of the bit

precision of the filter.

The ease of reprogrammability is further enhanced by using digital storage elements

such as flip-flops to store the filter coefficients. Reprogramming the filter coefficients be-

comes as simple as loading a new data word into a digital register. Also by using digi-

tal storage elements, the precision of the feedback and feedforward filter coefficients are

known and do not change over time. The usage of digital registers to store the filter coeffi-

cients effectively eliminates any issues related to precision.

Inherently in a second-order section, the issue of input and output sample data cor-

ruption when using a cascade of sample and hold circuits is limited. This issue and the

issue related to inconsistent sampling of the input and output data can be eliminated by

using independently clocked sample and hold circuits; however for an analog system, the

only feasible structure to connect the appropriate input and output sample to the appropri-

ate feedforward and feedback filter coefficient is to use a large switching matrix. In the

proposed mixed-signal second-order section, the switching matrix is eliminated because

the filter coefficients are stored using digital registers. By using digital registers, the filter

coefficients can be stored in a circular buffer without concern of data corruption as would

occur in an analog system. By storing the filter coefficients in a circular buffer, the filter

coefficients can be easily aligned with the appropriate input or output sample.

Simulation results of the proposed mixed-signal second-order section were generated.

These results were used to generate the frequency response for a low-pass filter. The pro-

posed filtering structure successful generated a frequency response close to the ideal one.

The maximum difference in magnitude between the ideal and the observed responses is
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slightly more than four tenths of a decibel. The maximum phase difference between the

ideal and the observed responses is less than five and a half degrees.

An analysis of potential error sources generated by using analog components was per-

formed to determine the effects that these analog components have on the proposed second-

order section. The sources of error considered were gain error in the signal path, offset error

in the signal path, and random noise in the signal path. Each source of error was analyzed

independently of one another. The key conclusions of these analyses are that offset error

sources are attenuated by the distributed arithmetic computational process, that the variance

of the random error sources are amplified by the distributed arithmetic computational pro-

cess, and that the gain error in the signal path determines the bit precision of the proposed

filter given a certain digital bit precision. From a design standpoint, these conclusions mean

that most of the design effort should be placed on minimizing the variance of random errors

sources and maximizing the precision of the amplifiers used.

6.2 Contributions

In this research, contributions are made in the following fields. The first one is in the

development of an adaptive filter using distributed arithmetic. The issues addressed by this

research are the lack of an efficient method to fully update the memory table of a distributed

arithmetic adaptive filter, the usage of memory resources beyond that of the non-adaptive

case, and the compromised convergence rate. The following contributions were made to

address these issues and to develop an adaptive distributed arithmetic filter with an efficient

method to fully update the memory table without using additional memory resources and

with uncompromised convergence performance.

1. A new method for fully updating the memory table was proposed. By fully updat-

ing the memory table, the convergence performance of the adaptive filter remains

unaffected; therefore, the proposed update method can be used to construct adaptive

filters using distributed arithmetic without a compromised convergence rate.
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2. A new method for efficiently updating the entire memory table was proposed. The

proposed update method reduced the computational workload for updating the mem-

ory table by about k/2 − 1 over brute-force.

3. By using a filter coefficient driven distributed arithmetic filtering structure, the addi-

tional memory resources required by most other types of adaptive distributed arith-

metic filtering structures, which use an input driven memory table that is composed

of the combinations of its filter coefficients, are eliminated.

In this research, the proposed memory update method is combined with a filter coefficient

driven distributed arithmetic filtering structure. This combination is called conjugate dis-

tributed arithmetic (CDA).

After a through literature review of adaptive distributed arithmetic filtering structures,

only one other type of adaptive DA that is called sliding-block distributed arithmetic (SBDA)

also addresses the issues outlined above with an adaptive DA filter. Although CDA is not

the only adaptive distributed arithmetic filtering structure that addresses these issues, CDA

is advantageous in a variety of filter configurations.

1. Among the adaptive distributed arithmetic filters that fully updates its memory tables,

CDA uses the least amount of memory. Its memory usage is only matched by the

brute-force method; however, CDA reduces the number of operations required by

about k/2 − 1 over brute force. Recall, only adaptive distributed arithmetic filters

that fully updates its memory tables is able to maintain the convergence speed of the

LMS algorithm.

2. CDA uses less memory than SBDA especially if the filter is broken up into few

subunits. This advantage is useful when coded on a system with limited memory.

3. CDA uses fewer additions than SBDA when the bit precision of the filter coefficients

in SBDA is greater than the number of additional memory table entries that need
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to be updated in CDA. Typically, this occurs when the coefficient bit precision, the

number of subunits, the depth of the memory tables, or a combination of these three

are low. A couple benefits of fewer additions are boosted sampling rate, or lower

power usage.

In addition to CDA and SBDA, an alternative adaptive DA filter structure called SBDA-

OBC was proposed and developed. Its memory update method is a modification of the

one used in SBDA, and it has lower memory usage and fewer additions for most filter

configurations over SBDA. The principle motivations for modifying SBDA are to encode

the memory using OBC such that the memory usage is reduced almost in half and to modify

SBDA in such a way that when the memory is encoding using OBC that the computational

workload for updating the memory table is reduced. The following are the observed savings

of SBDA-OBC.

1. SBDA-OBC has the lowest memory requirements of any current mechanization for a

coefficient driven, memory-based DA adaptive FIR filter. Specifically, SBDA-OBC

uses about 50% less memory than SBDA when the filter length of the subunits is

long.

2. SBDA-OBC has the fewest number of additions for a large number of filtering con-

figurations among the current mechanizations for a coefficient driven, memory-based

DA adaptive FIR filter. Specifically, SBDA-OBC needs about 50% less additions

than SBDA when the filter length of the subunits is long.

Contributions were also made in the field of reprogrammable mixed-signal FIR filter

design. The issues addressed by this research are the lack of a compact reprogrammable

filtering structure, the non-symmetric and imprecise filter coefficients, the inconsistent sam-

pling of the input data, and the corruption of the input samples. The following contributions

were made to address these issues.
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1. A reprogrammable mixed-signal FIR filter was proposed and developed to address

the issues of the lack of a compact reprogrammable filtering structure, the non-

symmetric and imprecise filter coefficients, the inconsistent sampling of the input

data, and the corruption of the input samples.

2. Distributed arithmetic and epots were used to address the issue of a lack of a compact

reprogrammable filtering structure for a reprogrammable mixed-signal FIR filter. A

combination of distributed arithmetic and epots were used to construct a compact

reprogrammable mixed-signal FIR filter.

3. epots were used to address the issue of non-symmetric and imprecise filter coeffi-

cients for a reprogrammable mixed-signal FIR filter. epots were used to precisely

reprogram the filter coefficients. These filter coefficients can be programmed with

such precision that a natural by-product is high filter coefficient symmetry.

4. Digital registers were used to address the issues of inconsistent input data sampling

and of input sample data corruption for a reprogrammable mixed-signal FIR filter.

The digital registers were used to sample the input data consistently and to eliminate

input data corruption. Because the digital registers can be cascaded without concern

for data corruption, this ability to cascade many input digital registers together allows

for the construct of a high order FIR filter using the proposed reprogrammable mixed-

signal FIR filtering structure.

5. An analysis of potential error sources generated by using analog components was per-

formed to determine the effects that these analog components have on the proposed

reprogrammable mixed-signal FIR filter. Deduced from this analysis, a guideline

was generated of where to focus the design effort for the proposed reprogrammable

mixed-signal FIR filter. The guideline is to use most of the design effort on mini-

mizing the variance of random errors sources and maximizing the precision of the

amplifiers used.
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Finally, contributions were made in the field of reprogrammable mixed-signal second-

order section design. The issues addressed by this research are the lack of a compact repro-

grammable filtering structure, the imprecise feedback and feedforward filter coefficients,

the inconsistent sampling of the input and output data, and the corruption of the input and

output samples. The following contributions were made to address these issues.

1. A reprogrammable mixed-signal second-order section was proposed and developed

to address the issues of the lack of a compact reprogrammable filtering structure, the

imprecise feedback and feedforward filter coefficients, the inconsistent sampling of

the input and output data, and the corruption of the input and output samples.

2. Distributed arithmetic and digital registers were used to address the issue of a lack

of a compact reprogrammable filtering structure for a reprogrammable mixed-signal

second-order section. A combination of distributed arithmetic and digital registers

were used to construct a compact reprogrammable mixed-signal second-order sec-

tion.

3. Digital registers were used to address the issue of imprecise feedback and feedfor-

ward filter coefficients for a reprogrammable mixed-signal second-order section. The

digital registers were used to precisely reprogram the filter coefficients.

4. Independently clocked sample and hold circuits and a circular buffer of digital regis-

ters were used to address the issues of inconsistent sampling of the input and output

data and of the corruption of the input and output samples for a reprogrammable

mixed-signal second-order section. The independently clocked sample and hold cir-

cuits and the circular buffer of digital registers were used to consistently sample the

input and output data and to minimize the corruption of the input and output samples.

5. An analysis of potential error sources generated by using analog components was per-

formed to determine the effects that these analog components have on the proposed
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reprogrammable mixed-signal second-order section. Deduced from this analysis, a

guideline was generated of where to focus the design effort for the proposed repro-

grammable mixed-signal second-order section. The guideline is to use most of the

design effort on minimizing the variance of random errors sources and maximizing

the precision of the amplifiers used.

6.3 Directions for Future Research

The following items listed below are directions for future research.

• In this thesis in Chapter 4, the construction and the performance of a 16-tap mixed-

signal FIR filter was presented. By using an external operational amplifier as a sum-

mation element, multiple 16-tap mixed-signal FIR filters could be combined together

to create high-order FIR filtering systems.

• In this thesis, the construction and the performance of a second-order section mixed-

signal distributed arithmetic filter was studied. Using this second-order section as a

building block, filters with more demanding frequency responses can be constructed

using multiple sections. To minimize the effects of noise when cascading multiple

analog components in series, this high-order filter can be constructed using second-

order sections connected in parallel.

• Although the RASP 2.8 FPAA is capable of synthesizing the proposed mixed-signal

second-order section, the capabilities could be further enhanced by optimizing the

RASP 2.8 FPAA for the proposed mixed-signal filters.

• A folded mixed-signal FIR filter could be developed to further enhance the linear

phase response of an FIR filter. A mixed-signal FIR filter constructed in such a

manner should have more symmetric filter coefficients. The linear phase is improved

by improving the symmetry of the filter coefficients.
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• To increase the variety of applications that a mixed-signal distributed arithmetic fil-

ter could be used, an analog-to-analog mixed-signal distributed arithmetic FIR fil-

ter could be designed. This type of filter would complement the proposed digital-

to-analog mixed-signal DA FIR filter, and constructed in a similar manner to the

analog-to-analog mixed-signal distributed arithmetic second-order section.
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[42] E. Özalevli, Exploiting Floating-Gate Transistor Properties in Analog and Mixed-
Signal Circuit Design. PhD thesis, Georgia Institute of Technology, Atlanta, Georgia,
United States, August 2006.
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