
Mapping Algorithm for Large-scale Field Programmable
Analog Array ∗

Faik Baskaya, Sasank Reddy, Sung Kyu Lim, Tyson Hall, and David V. Anderson

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332

{baskaya, sreddy, limsk, tyson, dva}@ece.gatech.edu

ABSTRACT
Modern advances in reconfigurable analog technologies are
allowing field-programmable analog arrays (FPAAs) to dra-
matically grow in size, flexibility, and usefulness. With these
advances, analog circuits and systems can be programmable,
reconfigurable, adaptive, implemented on standard CMOS
to take advantage of scaled CMOS technology, and at a den-
sity comparable to digital memories. Our goal in this paper
is to develop the first physical design automation toolset
for floating-gate based FPAA with focus on minimization of
parasitic effects on FPAA interconnect. We provide graph-
based analog circuit and FPAA device modeling suitable
for efficient mapping. Our FPAA clustering algorithm con-
structs Computational Analog Blocks (CAB) from analog
circuit elements while improving the utilization of the de-
vice and reducing its impact on the total number of routing
switches used. Experimental results demonstrate the effec-
tiveness of our approach.

Categories and Subject Descriptors
B.7.2 [Design Aid]: Placement and routing

General Terms
Algorithms, Design

Keywords
Floating gates, Field Programmable Analog Array, mapping

1. INTRODUCTION
While digital processors can perform the desired func-

tions, there are many cases where an analog design can offer
the same functionality at a fraction of the power required
for the digital solution. Modern advances in reconfigurable

∗This research has been supported by the National Science
Foundation under contract CNS-0411149.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’05,April 3–6, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-021-3/05/0004 ...$5.00.

+

WR_OTA

+

WR_OTA

+

WR_OTA

+

WR_OTA
+

WR_OTA

+

WR_OTA

Figure 1: An analog circuit and its mapping onto
our floating-gate based FPAA.

analog technologies are allowing field-programmable analog
arrays (FPAAs) to dramatically grow in size, flexibility, and
usefulness. With these advances, analog circuits and sys-
tems can be programmable, reconfigurable, adaptive, im-
plemented on standard CMOS to take advantage of scaled
CMOS technology, and at a density comparable to digital
memories. Our goal in this paper is to develop the first phys-
ical design automation toolset for floating-gate based FPAA
with focus on minimization of parasitic effects on FPAA in-
terconnect.

On the otherhand, FPAAs still have not achieved the same
success as FPGAs in the digital domain even with the grown
interest, availability and use of FPAAs. This results from
several factors, including the lack of CAD tools, small circuit
density, small bandwidth and layout dependent noise figures.
These factors are all related to each other, making the design
of a high performance FPAA a multi-dimensional problem.
A critical reason behind these difficulties is the non-ideal
programming technology, which contributes a large portion
of parasitics into the sensitive analog system.

The floating-gate transistors used in our FPAAs are stan-
dard pFET devices whose gate terminals are not connected
to signals except through capacitors. Because the gate ter-
minal is well insulated from external signals, it can main-
tain a permanent charge, and thus, it is an analog memory
cell similar to an EEPROM cell. We propose to develop
the first mapping algorithm for floating-gate based large-
scale FPAA. The possibility of programmable analog tech-
nology has potential to penetrate the market from simple
one-parameter programmable elements to large-scale signal
processing front-end systems. A few companies have already

started investigating using analog floating-gate elements as
simple trimming elements for analog applications, but these
approaches only start to unlock the potential of this tech-
nology. An illustration of analog circuit mapping using our
FPAA is shown in Figure 1.

The existing CAD works for FPAAs target switch capacitor-
based FPAAs (Motorola) and include behavioral synthesis
[10, 3], technology mapping [2], and place-and-route [10,
9, 1]. However, these algorithms are designed for small-
scale FPAAs and thus are not applicable for our large-scale
floating-gate based FPAA. In addition, the placement and
routing constraints in our floating-gate based FPAA are rad-
ically different from the switch capacitor-based FPAA. Since
the major parasitic effects on FPAA chips are due to para-
sitic resistance and capacitance on FPAA interconnects, our
goal is to minimize the overall routing switches used while
satisfying various device/wire-related constraints.

The remainer of this paper is organized as follows. Sec-
tion II presents the analog circuit and FPAA device mod-
eling. Section III presents the problem formulation. Sec-
tion IV presents the signal degradation modeling. Section
V presents our FPAA clustering algorithm. Experimental
results are shown in Section VI, and we conclude in Section
VII.

2. DEVICE AND CIRCUIT MODELING

2.1 FPAA Device Modeling
A floating-gate element is a polysilicon layer that has no

contacts to other layers; this floating-gate can be the gate
of a MOSFET and can be capacitively connected to other
layers. Charge on the floating-gate is stored permanently,
providing a long-term memory, because it is completely sur-
rounded by a high-quality insulator. Since the floating-gate
voltage can modulate a MOSFET’s channel current, the
floating-gate is not only a memory, but also can be an inte-
gral part of a computation. The charge on the floating-gate
is modified through a combination of hot-electron injection
and electron tunneling, and the modifications can occur si-
multaniously to the computation being performed [4, 6, 7].
The small size and scalability make these approaches ideal
for integration with classical analog techniques (e.g. voltage
references, filters, ADCs or DACs) as well as larger-scale
analog signal processing techniques (e.g. compression or
classification for audio or image signal processing). There-
fore, with both digital and analog signal processing modali-
ties feasible, more options are now available when designing
a signal processing system.

The computational logic in the FPAA is organized in a
compact computational analog block (CAB) that consists of
op-amps, transistors, multiplier, programmable capacitors,
edge detectors and filters. An illustration is shown in Fig-
ure 2. CABs are tiled across the chip in a regular mesh-type
architecture with busses and local interconnects in-between.
The major parasitic effects on FPAA chips are due to par-
asitic resistance and capacitance on FPAA interconnects.
Therefore, the primary objective during mapping is to mini-
mize the total number of wires and switches involved in each
interconnect.

We model the given FPAA architecture with an undi-
rected graph A(V, E), where V denotes a set of CABs, I/O
cells, local crossbars, and global crossbars, and E denotes
a set of local wires, crossbar wires, global wires, and I/O

CAB

local
switch

global
switch

Figure 3: Illustration of graph-based FPAA device
modeling.

in
+

in

4x4

vector

multiplier out

out

max

min

in

cg

op

ca

m1

vm

ps

ps

in

pf

nf

c4 m2

ps

ps

ps

ps out

out

vdd

gnd

gnd

Figure 4: Illustration of analog circuit modeling

wires. We model the given analog circuit with a directed
graph G(V, E), where V denotes a set of passive, active,
pseudo, and I/O elements in the circuit and E denotes a set
of connections among the elements. An illustration of our
architecture modeling is shown in Figure 3.

2.2 Analog Circuit Modeling
Analog circuit modeling can be divided into two phases:

analog circuit description and element modeling. Analog
circuit description, the process in which a circuit that will
be analyzed is represented in terms of its topology and ele-
ment values, has two major challenges. The first challenge
is to make the description human readable, and the sec-
ond challenge is to make it programmatically friendly. In
order to satisfy these constraints, a SPICE-like netlist was
chosen to describe the circuits. Each element in the cir-
cuit is specified by an element line that contains the name
and the circuit nodes to which the element is connected to.
The element name is an alphanumeric string which begins
with a reserved name and ends with a number representing
a unique node. Thus, vm1, vm2, cg1, ca1, and op1 are all
valid element names representing different nodes in a circuit.
Input and output pins are described in a similar fashion.

Analog Circuit Components

+

WR_OTA

C4 (AFGA)

In Out

+

WR_OTA

+

WR_OTA

(a) (b)

40x48
x-bar

CAB

16x16

x-bar

40x48
x-bar

CAB

16x16

x-bar

40x48
x-bar

CAB

16x16

x-bar

40x48
x-bar

CAB

16x16

x-bar

(c)

Figure 2: (a) Computational Analog Block (CAB) for an FPAA based on floating-gate devices, where each
CAB contains a four-by-four matrix multiplier, three wide-range operational transconductance amplifiers
(OTAs), three fixed–value capacitors, a capcatively coupled current conveyor (C4), a signal-by-signal multi-
plier, one pFET, and one nFET. (b) overall block diagram for a large-scale FPAA. The switching interconnects
are fully connectable crossbar networks built using floating-gate transistors, (c) layout of a single CAB and
its crossbar.

More complex circuits can be created by using sub-circuit
files. Basically, a generic circuit is described with an in-
put/output node interface list and a similar netlist as a reg-
ular circuit but without unique numbers representing each
element. This sub-circuit then can be used multiple times
in a circuit description without having to re-write every ele-
ment in the sub-circuit description. Element modeling is the
next phase after analog circuit description. Each element is
modeled as one or more vertices in a directed graph depend-
ing on the number of output terminals. Unlike digital gates,
analog devices may have multiple output terminals. Also,
each vertex must drive only one net. In order to support
such a device, pseudo vertices and pseudo nets are intro-
duced into the graph. Figure 4 illustrates a sample analog
circuit and its corresponding directed graph.

3. PROBLEM FORMULATION
We divide the FPAA physical synthesis process into three

steps, namely, FPAA clustering, FPAA placement, and FPAA
routing:

• FPAA Clustering: the input is the netlist along with
FPAA architecture. The output is a clustered netlist
that satisfies the device-related resource constraints,
i.e., number of components and IO ports in each CAB.
The primary objective is to minimize the amount of
inter-cluster connection, which has positive impact on
total number of switches needed after routing. The
secondary objective is to pack each cluster to its capac-
ity in order to minimize the number of CABs needed.

• FPAA Placement: the FPAA placement problem is to
seek a 1-to-1 mapping between the set of clusters we
obtain from FPAA clustering and the set of CABs in
the given FPAA architecture. In addition, we map I/O
nodes in the given circuit to I/O cells in the FPAA.
The primary objective is to minimize the estimated
number of switches needed after routing. The sec-

ondary objectives include total/maximum wirelength
and reduced congestion (= improved routability).

• FPAA Routing: the FPAA routing problem is to map
each edge in G to a set of wires in the given FPAA
architecture. Each intra-cluster edge in G may use
local wires, whereas each inter-cluster edge may only
use vertical and possibly horizontal global wires. The
objective is to complete the routing while minimizing
the performance degradation. Our goal is to minimize
the total parasitics along the interconnect, and this
is done by minimizing the number of various types of
wires and switches along the interconnects.

The focus of this paper is to develop algorithms for FPAA
clustering.

There are three types of possible interconnects between
the components. These can be called as intra-CAB, inter-
CAB/intra-column and inter-column interconnects. Each
of these interconnects are essentially wires which are con-
nected to the components or other types of interconnects
via floating-gate transistor switches. Due to the fact that
each interconnect type contains different number of switches
and the switches still have a loading effect on the circuits
even when they are closed, different interconnect types have
different effects on the circuit performance.

Intra-CAB interconnects are local interconnects within
every CAB. For this reason, they are also referred to as
internal nets, or i-nets in this paper. These interconnects
correspond to the local wires and several switches on them,
which can only be used to connect the components within
a CAB. Since they don’t go all the way from the top row
of CABs to the bottom and contain less total number of
switches than other types of interconnects along the wire,
the overall parasitic effect of switches on the interconnect is
less and is desirable for connections that require less load-
ing. These interconnects can not be used for connecting a
component to another component if they are clustered in
different CABs.

Inter-CAB interconnects correspond to the vertical global
wires on columns of the FPAA. Since these wires (along with
their inter-column counterparts to be described below) es-
tablish connections between the components clustered into
different CABs, they are also called as external nets, or x-
nets in this paper. There are also switches enabling access to
the inter-column interconnects on these wires. When a con-
nection has been established on an inter-CAB/intra-column
interconnect, that wire is dedicated to this connection from
the very top row to the bottom. Hence, these interconnects
have to be shared between the CABs in a column, and are
very valuable resources. An inter-CAB/intra-column inter-
connect has more loading effect on the circuit compared to
an intra-CAB interconnect.

In order to establish connection between the components
in different FPAA columns, a horizontal global wire, namely,
an inter-column interconnect is required. These wires have
accesses to the vertical global wires via floating-gate tran-
sistor switches. Since these wires go all the way from the
first column to the last, they cause a considerable loading
on the circuit as well.

Intra-CAB and inter-CAB/intra-column interconnects are
all determined at the end of clustering phase. On the other
hand, inter-column interconnects can be determined only
after the placement phase.

4. PERFORMANCE DEGRADATION
The impact of interconnect parasitics strongly depends

on whether the interconnect is an internal or an external
signal path. An internal path connects two elements in a
single CAB, two CABs, or one CAB and input I/O cell. An
external path connects a CAB to an output I/O cell. The
performance degradation from an external path, denoted
Dext, is simply given by the sum of all wires and switches
parasitics along the path.

By introducing the capacitor attenuation parameter α, the
parasitic effects on FPAA interconnects are modeled as ca-
pacitor attenuation. In order to estimate the circuit per-
formance degradation caused by the parasitics on an FPAA
signal path i, the capacitors that are charged or discharged
through the signal path i are attenuated by a factor of α
during the circuit analysis. The capacitance attenuation pa-
rameter αi for path i is defined to be the ratio between the
capacitance at the destination CAB and the source CAB.
The computation of αi involves computing parasitics along
i between the source and sink CABs. Let V id

l denote the
ideal voltage of internal paths contributing to the output
l. Thus, V id

l is a function of capacitors along the paths:
V id

l = fl(c1, c2, . . . , ck). Let Sl
cj

denote the sensitivity of

output signal l with respect to capacitor cj . Then, Sl
cj

=

(∂fl/∂cj) × (cj/fl). Finally, the performance degradation
from an internal path is given by:

Dint =

LX
l=1

wl

������ kjX
j=1

Sl
cj

(αj − 1)

������
where αj is the capacitor attenuation factor for a path that
drives capacitor cj .

Assuming a single CAB is driving an output cell, the com-
putation of Dext is straightforward. For each output, we
compute the total wire resistance between the CAB output
and the output cell, which will in turn determine the corre-

sponding output attenuation factor. On the other hand, the
computation of Dint is much harder due to its high runtime
and space complexity. For a given output v, we need to ex-
amine all possible paths that connect to v. However, there
exists an exponential number of directed external paths for
a single output in a directed graph G. In addition, for each
CAB-to-CAB connection e, we may need to store sensitivity
value for all output cells since e may lead to all output nodes.
Thus the time complexity is exponential and space complex-
ity is quadratic. During our physical synthesis optimization,
therefore, it is desirable to compute estimated values of Dint

and Dext instead of exact values. The parasitics of wires and
switches along the paths to output cells play the major role.
Therefore, we focus on minimizing the number of switches
on the intra-CAB and inter-CAB interconnect as mentioned
in Section 3 for performance degradation minimization.

5. FPAA CLUSTERING ALGORITHM

5.1 Constraints, Objectives and Challenges
There are two main types of structural constraints in the

FPAA architectures, namely, device and net constraints.
There is a certain number of each device or analog circuit
block in each CAB. These numbers determine the device
constraints. Furthermore, we don’t have infinitely many
wires and switches for connecting the devices and circuit
blocks to each other. The wires for connecting components
of the same CAB to each other are called as internal nets
whereas the remaining wires that are used to connect de-
vices from different CAB’s to each other are called as exter-
nal nets. Each type of net has its own limits and all these
limits in addition to the device constraints are given in a
device file.

In the proposed FPAA clustering algorithm, we accept
user defined constraints in addition to the structural con-
straints. The components specified by the user defined con-
straints have to be clustered into the same group under all
conditions. Due to the hierarchical support of the cell data
structure, we can create a new cell which will cover all the
cells in this group and treat the whole cluster as a single
cell.

Unfortunately, the x-net limits described above are not
exclusive to each CAB but they must also be observed by
the CABS which will share the same column at the end of
the placement phase. This x-net sharing condition shapes
our objective during FPAA clustering, which is to minimize
the number of used CAB’s while keeping the number of i-
nets as high and the number of x-nets as low as possible.
The constraint on number of x-nets for the proposed FPAA
architectures is so hard that at this time we had to give
priority to reducing the cut size between the clusters rather
than being concerned with the weight of the nets.

Another challenge comes from one of the components in
the FPAA structure, which is called as Vector Matrix Mul-
tiplier (VM). Since it is a rather large circuit compared to
the others, it comes with only a few of all CAB’s. So, this
component is given higher priority in determining the order
for clustering the cells.

This is not the only challenge brought on by VMs. Due
to its high number of input and output terminals, a VM
can easily violate the x-net limitation by itself. Actually,
not only VM but also the cell groups formed by the user
defined constraints described above can introduce similar

CAB Selection
1: best = NULL;
2: for (each ordered cell i)
3: for (each CAB c)
4: if (c is available for i)
5: if (rank(c) > rank(best))
6: best = c;
7: if (best == NULL)
8: for (each CAB x with x-net violation)
9: if (x-net reduce(x))
10: best = x;
11: return best;

Figure 5: Pseudo code for CAB select algorithm.

challenges. This would cause problems in a straightforward
clustering algorithm since there would be times that there
are no available CAB’s in sight and the search would stop.
This problem is overcome by the x-net reduction algorithm
we propose later.

In the following sections, different steps of FPAA cluster-
ing algorithm are described.

5.2 Pre-clustering and Cell Ordering
In this step, cells corresponding to the components that

have to be in the same cluster under all conditions due
to user defined constraints or other possible reasons are
grouped together under a higher level cell. The I/O cells
are also separated from the remaining cells in this step.

Once the groups are formed, all non I/O cells are put
into an order for clustering. The atomic cells already pre-
clustered will be exempt from ordering and clustering. In-
stead their parent cells will be ordered and clustered.

During ordering, the three main groups are treated differ-
ently. VM type cells and other cells that include VM type
cells are given the highest priority. Then comes the user de-
fined groups of cells. Finally, the remaining cells follow after
being ordered according to Modified Hyper Edge Coarsen-
ing scheme [5]. The motivation is to give higher priority
to the cells in the same net to group together first, thereby
reducing the inter-CAB connection.

5.3 CAB Selection
A pseudocode for the CAB selection algorithm is pre-

sented in Figure 5. The cells to be clustered are already or-
dered in the previous step. Next, for each of these cells every
CAB is scanned for availability and then ranked. Ranking
is done based on the improvement of occupancy of the cab,
increase in the number of i-nets and decrease in the num-
ber of x-nets when the given cell is assigned to the CAB
of interest. The CAB with the highest rank is selected for
assignment.

A CAB may be unavailable for a given cell due to de-
vice and net constraints. If addition of the cell violates the
device constraints or i-net constraints (local switch limits),
there is no way that this selection may be feasible. X-net
violation, on the other hand, is a different issue. Allowing
temporary violation of x-net constraints may later result in
an increase in i-nets within acceptable limits. Thus, the cabs
which violate only x-nets are kept in a separate list, called as

x-net reduce(c)
1: while (x net(c) > x net limit)
2: for (each neighbor n of c)
3: if (c is available for n)
4: pkey[n] = # nets in n not link to c;
5: skey[n] = # nets in n link to c;
6: if (no n is available)
7: return FALSE;
8: add n with max skey[n] with min skey[n];
9: return TRUE;

Figure 6: Pseudo code for x-net reduction algo-
rithm.

x-net-violate-only cabs in an order such that the cabs with
lower overflow value are in front. These cabs are tested for
x-net reduction algorithm (line 10) in the case that no avail-
able CAB’s may be found for assignment. X-net reduction
algorithm is explained in the following section.

5.4 X-net Reduction
X-net reduction algorithm described in Figure 6 is inspired

by Prim’s minimum spanning tree algorithm [8]. The objec-
tive of this algorithm is to reduce the number of x-nets of the
cluster assigned to the given cab to an acceptable level. This
value could be the x-net limit or even lower. Every neigh-
boring cell available for this cluster is given a key, which
is the number of nets of this neighbor cell not shared with
the cluster. Then the neighbor with the minimum key is
selected for assignment to the cab containing the cluster.
If there are several cells all having the same minimum key
value, then we look at the maximum secondary key holder
among these cells. Secondary key is the number of nets of a
cell which are also shared with the given cluster.

X-net reduction continues until the number of x-nets are
below the desired value (success), or the cab is no more
available for neighboring cells (no success).

6. EXPERIMENTAL RESULTS
We implemented our algorithms using C++/STL, com-

piled with gcc v3.3, and tested on an Apple Powerbook
loaded with MAC OS X Panther v10.3, running with a 1.5
GHz PowerPC G4 processor, and containing 1 GB of RAM.
The benchmark generation and clustering processes were in-
dependent C++/STL programs.

The algorithms were tested in 4 different FPAA architec-
tures of various sizes with 5 benchmark circuits using each
architecture. Currently, there are two available CAB types.
These types are given in Table 1. Table 2 summarizes dif-
ferent FPAA architectures. Due to the different number of
rows in each architecture, each FPAA column may accomo-
date more CABs. Thus, inter-CAB/intra-column intercon-
nect limitations have to be adjusted accordingly. Therefore,
different number of global wires per column are allowed for
each architecture. The 20 benchmark circuits being used are
displayed in Table 3. Sizes of the benchmark circuits range
from 10 components with 17 nets up to 500 components and
707 nets.

Clustering algorithm has been applied to 20 benchmark
circuits in 4 different FPAA architectures and the results

Table 3: FPAA clustering results
benchmark circuits total usage average utilization time

ckt #comp #nets arch CAB lsw gsw comp i-nets x-nets (ms)
a1 10 17 fpaa1 2 18 18 47.70% 45.00% 40.00% 10
a6 20 27 fpaa1 4 40 19 48.41% 50.00% 22.50% 20
a9 16 23 fpaa1 4 28 20 38.41% 35.00% 22.50% 20
a12 18 22 fpaa1 4 29 17 45.00% 35.00% 20.00% 20
a15 10 18 fpaa1 2 22 16 47.27% 55.00% 35.00% 10
b4 89 128 fpaa2 16 151 119 53.24% 46.25% 33.75% 770
b11 74 115 fpaa2 14 117 136 50.13% 40.71% 41.43% 240
b12 111 160 fpaa2 17 192 144 62.67% 55.29% 38.82% 630
c1 187 253 fpaa2 37 269 262 49.21% 35.68% 32.70% 2060
c5 207 300 fpaa2 47 292 350 42.30% 30.64% 33.19% 8010
d1 267 384 fpaa3 60 399 427 42.68% 32.50% 31.50% 16080
d2 302 434 fpaa3 63 419 503 46.20% 32.70% 36.19% 22420
d3 307 438 fpaa3 62 461 473 47.55% 36.61% 34.03% 22830
d4 297 411 fpaa3 62 415 455 46.51% 32.90% 33.39% 19610
d5 265 371 fpaa3 50 368 431 51.20% 36.00% 38.20% 15290
e1 423 602 fpaa4 92 639 638 44.34% 34.24% 31.20% 103470
e2 396 555 fpaa4 80 563 617 47.98% 34.75% 34.63% 84770
e3 403 567 fpaa4 75 626 568 51.87% 41.07% 34.53% 89150
f4 500 707 fpaa4 101 792 707 47.70% 38.32% 31.68% 163820
f5 474 680 fpaa4 106 734 734 42.96% 33.77% 30.38% 143990

Table 1: FPAA CAB types
comp cab0 cab1
opamp 3 3
cap 1 1
cap (grounded) 2 2
vm multiplier 0 1
minmax 1 1
pfet 1 1
nfet 1 1
c4 filter 1 1
local wires 10 10

Table 2: FPAA architectures
comp fpaa1 fpaa2 fpaa3 fpaa4
dimension 4× 4 8× 8 12× 12 16× 16
cab0 4 16 36 64
cab1 12 48 108 192
global wires/col 6 10 15 20
total global wires 24 80 180 320

obtained are displayed in Table 3. Depending on the bench-
mark circuit complexity, number of generated clusters range
from 2 up to 106. The number of local switches obtained
at the clustering phase will be the final total number of
switches whereas the number of global switches given in the
table represent only those which connect the CABs to the
vertical global wires. The total number of global switches
can be known only after the placement is finished and the
switches connecting vertical wires to the horizontal wires are
determined.

For each cluster, average utilization of components is within
40% to 60% margin, which is acceptable due to the fact that
priority is given to reducing the number of external connec-
tions and the limited number of internal connections. Uti-

lization of external connections is lower than that of internal
connections and components, which is also not a bad thing,
for it will make the further steps of mapping easier by giving
more room to sharing of external connections in a column.
Internal connections, on the other hand could be better uti-
lized than the obtained results, since it would further reduce
the number of external connections and this limitation will
not be revisited in further steps once the clustering is com-
plete.

7. CONCLUSIONS
In this paper we present the problem formulation and al-

gorithms for clustering targeting floating-gate based FPAA.
Since the major parasitic effects on FPAA chips are due to
parasitic resistance and capacitance on FPAA interconnects,
our goal is to minimize the overall routing switches used
while satisfying various device/wire-related constraints. Our
ongoing work includes placement and routing as well as path
length balancing heuristics. Signal degradation modeling
and analysis is also underway. Our FPAA mapping tool will
be used to evaluate and improve candidate FPAA architec-
tures for a variety of signal processing designs.

8. REFERENCES
[1] S. Ganesan and R. Vemuri. FAAR: a router for

field-programmable analog arrays. In Proc. Intl. Conf.
on VLSI Design, pages 556–563, 1999.

[2] S. Ganesan and R. Vemuri. Technology mapping and
retargeting for field-programmable analog arrays. In
Proc. Design, Automation and Test in Europe, 2000.

[3] S. Ganesan and R. Vemuri. Behavioral partitioning in
the synthesis of mixed analog-digital systems. In Proc.
ACM Design Automation Conf., 2001.

[4] P. Hasler, C. Diorio, B. A. Minch, and C. A. Mead.
Advances in Neural Information Processing Systems 7,

chapter Single transistor learning synapses, pages
817–824. MIT Press, Cambridge, MA, 1995.

[5] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning : Application in
VLSI domain. In Proc. ACM Design Automation
Conf., pages 526–529, 1997.

[6] M. Kucic, P. Hasler, J. Dugger, and D. V. Anderson.
Programmable and adaptive analog filters using arrays
of floating-gate circuits. In E. Brunvand and C. Myers,
editors, 2001 Conference on Advanced Research in
VLSI, pages 148–162. IEEE Computer Society, March
2001.

[7] M. Kucic, A. Low, P. Hasler, and J. Neff. A
programmable continuous-time floating-gate fourier
processor. IEEE Transactions on Circuits and Systems
II, 48(1), 2001.

[8] R. C. Prim. Shortest connection networks and some
generalizations. Bell Systems Technical Journal,
36:1389–1401, 1957.

[9] H. Wang and S. Vrudhula. Performance driven
placememnt and routing for field programmable
analog arrays. In Proc. Intl. Conf. on Mixed Design of
Integrated Circuits and Systems, pages 207–212, 2001.

[10] H. Wang and S. Vrudhula. Behavioral synthesis of
field programmable analog array circuits. ACM Trans.
on Design Automation of Electronics Systems, pages
563–604, 2002.

