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ABSTRACT

Field—programmable analog arrays (FPAAS) provide a method for rapidly
prototyping analog systems. Currently available commercial and aca-
demic FPAAs are typically based on operational amplifiers (or other sim-
ilar analog primitives) with only a few computational elements per chip.
While their specific architectures vary, their small sizes and often restric-
tive interconnect designs leave current FPAAs limited in functionality, flex-
ibility, and usefulness. In this paper, we explore the use of floating—gate
devices as the core programmable element in a large—scale FPAA with ap-
plications in signal processing emphasized. An FPAA architecture is pre-
sented that offers increased functionality and flexibility in realizing analog
signal processing systems, and experimental data from a testbed FPAA is
shown. In addition, mainstream signal processing systems are discussed
that can be effectively implemented on large—scale reconfigurable analog
devices thereby realizing dramatic savings in power over traditional digital
solutions and improved time—to—market over traditional analog designs.

1. LOW-POWER SIGNAL PROCESSING

The future of field—programmable analog arrays
(FPAAS) lies in their ability to speed the implementation
of advanced, low—power signal processing systems. In this
paper, we present an architecture for achieving flexible,
large—scale FPAAs targeted at mainstream signal process-
ing systems. These FPAAS are intended to impact analog
signal processing in two ways: first, they perform the
function of all rapid prototyping devices in reducing devel-
opment time. Second, they are a platform for implementing
advanced signal processing functions, usually reserved for
only digital systems, in analog circuits.

The primary benefit of implementing signal process-
ing systems in analog is the potential for large savings
in power consumption. For DSP microprocessors, Gene’s
law postulates that the power consumption, as measured in
mW/MIPS, is halved about every 18 months [1]. These ad-
vances largely follow Moore’s law, and they are achieved
by using decreased feature size and other refinements, such
as intelligent clock gating. Unfortunately, a problem looms
on the horizon; the power consumption of the analog—to—
digital converter (ADC) does not follow Gene’s law and
will soon dominate the total power budget of digital sys-
tems. While ADC resolution has been increasing at roughly
1.5 bits every five years, the power performance has re-
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Fig. 1. Data from [1] showing the power consumption trends in DSP
microprocessors along with data taken from a recent analog, floating—gate
integrated chip developed by the CADSP team.
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mained the same, and soon, physical limits will further slow
progress.

Most current signal processing systems that generate dig-
ital output place the ADC as close to the analog input signal
as possible to take advantage of the computational flexibil-
ity available in digital processors. However, the develop-
ment of large—scale FPAAs and the CAD tools needed for
their ease of use, would allow engineers the option of per-
forming some of the computations in reconfigurable analog
hardware prior to the ADC, resulting in both a simpler ADC
and a substantially reduced computational load on the digi-
tal processors that follow. Experimental data from analog
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Fig. 2. (a) Digital PLDs can be used to implement small, carefully defined pieces of a complex system, while FPGAs can be used to implement entire
systems including processor datapaths, complex DSP functions, and more. Modern FPGAs can be 100 - 10,000 times larger and more complex than the PLDs
of the 1970s and 1980s. (b) Analagously, traditional FPAAs resemble the early PLDs in that they are focused on small systems such as low—order filtering,
amplification, and signal conditioning. However, the FPAAs based on floating—-gate devices presented here are much larger devices with the functionality
needed to implement high—level system blocks such as programmable high-order filtering and fourier processing in addition to having a large number of

programmable op—amp and transistor elements.

signal processing systems has shown that power require-
ments can be decreased up to five orders of magnitude over
typical DSP microprocessor implementations [2, 3]. As il-
lustrated in Fig. 1, this corresponds to a 20 year leap forward
on the power curve predicted by Gene’s Law [4].

For analog systems to be desirable to the largely digi-
tal signal processing commmunity, they not only need to
have a significant advantage in terms of size and power but
they must be relatively easy to use and easily integrated into
a larger digital system. In addition, they must be shown
to be accurately programmable and effective at implement-
ing many of the key systems found within digital signal
processing (DSP). As shown in Table 1, the functional-
ity desired for any technology focused on signal process-
ing includes monolithic filters, linear and nonlinear scalar
functions, vector-matrix operations (i.e., transforms, dis-
tance metrics, winner-take-all, principle component analy-
sis, etc.), linear—phase filters, adaptation, and tap delay lines
for FIR systems.

2. LARGE-SCALE FPAAS

FPAAs are the analog equivalent of digital field—
programmable gate arrays (FPGAs). FPAAs provide a re-
configurable platform that can be used to implement a num-
ber of different systems. The traditional analog IC design
process can be lengthy, lasting for over a year if multiple
iterations of a design must be fabricated. Thus, the benefits
of rapid prototyping for analog circuits would be significant
in the design and testing of analog systems.

FPAAs have been of interest for some time, but histor-
ically, these devices have had very few programmable el-
ements and limited interconnect capabilities, making them
limited in their usefulness and versatility. Currently avail-
able commercial and academic FPAAs are typically based
on op—amp circuits with only relatively few op—amps per
chip [5, 6, 7, 8, 9]. The next—generation FPAA needs to cor-
rect these problems in order to extend the usefulness and ac-
ceptance of FPAAs. As shown in Fig. 2, traditional FPAAs
resemble the early PLDs in that they are focused on small
systems such as low—order filtering, amplification, and sig-
nal conditioning. However, the class of large—scale FPAAs
that we are exploring in this paper are more analogous to
modern FPGAs. Our proposed FPAAs are much larger de-
vices with the functionality needed to implement high—level
system blocks such as programmable high—order filtering
and fourier processing in addition to having a large hum-
ber of medium—grain, programmable analog blocks (e.g.,
operational transconductance amplifiers (OTAS), transistor
elements, capacitors, etc.).

Ideally, one would like to base future FPAAS on a tech-
nology that provides a small, easily programmable element
that can be configured to act as an ideal switch, variable re-
sistor, and configurable computational element. While such
an ideal element is currently unattainable, advances in the
area of floating—gate transistors have led to an analog tech-
nology that is very small, accurately programmable, and ex-
tremely low in power consumption. Previously, we have
proposed that the floating—gate transistor can be used as a
non-ideal switch, variable resistor, and programmable ele-



ment within larger computational blocks (e.g., analog multi-
plier, programmable filter, programmable OTAs, etc.) [10].
A small, testbed FPAA has been fabricated to study the ef-
fects of the floating—gate transistor within a reconfigurable
environment. Named the Reconfigurable Analog Signal
Processor (RASP), this FPAA includes a 64 x 16 cross-
bar switch interconnect and a computational analog block
(CAB) similar to that shown in Fig. 4b. Floating-gate tran-
sistors are used as both the crossbar switches and the pro-
grammable element within the computational logic.

The floating—gate transistors used in these FPAAs are
standard pFET devices whose gate terminals are not con-
nected to signals except through capacitors (e.g., no DC
path to a fixed potential) [11]. Because the gate terminal
is well insulated from external signals, it can maintain a
permanent charge, and thus, it is an analog memory cell
similar to an EEPROM cell. With a floating gate, the cur-
rent through the pFET channel is dependent on the charge
of the floating—gate node. By using hot-electron injection to
decrease the charge on the floating—gate node and electron
tunneling to increase the charge on the floating—gate node,
the current flow through the pFET channel can be accurately
controlled [11, 12, 13].

The architecture of an FPAA based on floating—gate tran-
sistors is such that a single programmable device is used
throughout the design. The floating—gate transistor is used
as the switch within the crossbar network, and it is used
within the computational analog blocks (CABSs) to program
the characteristics and functionality of the computational el-
ements.

The floating—gate switch network has been characterized
in [4]. The switches were found to exhibit similar char-
acteristics to standard pFET switches with an “on” resis-
tance as low as 11 k2 and an “off” resistance in the low
gigaohm range. They have also been shown to be accu-
rately programmable and capable of implementing a vari-
able resistance. As shown in Fig. 3, the floating—gate switch
can be programmed in between the “on” and “off” extremes
and used as a nonlinear impedance. This allows for a very
compact architecture in contrast to many traditional FPAA
designs, which require large resistor or capacitor arrays to
achieve this same functionality. In addition, routing com-
plexity is reduced because a separate resistance or capac-
itance element does not have to be included in the signal
path.

To increase the quality of a switch, the floating—gate tran-
sistors are programmed to the far extremes of their range.
In this case, one of the limiting factors is the ability of the
measurement equipment to measure the very small currents
present as the switch is programmed “off.” To extend the vi-
able programming range, current measurements are taken at
larger Vpp’s as shown in Figure 3. Measuring the currents
with Vpp = 6.5 V, allows the 1=V curves to be visible to
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Fig. 3. Floating—gate switches can be programmed within a wide range.
Here, examples of an “on”, “off”, and mid—position device are shown. Dur-
ing programming, currents are measured with Vp p = 3.3V for large cur-
rents and Vpp = 6.5V for small currents. This effectively extends the
programming range of the device.

the programming infrastructure 1 V below the point visible
when Vpp = 3.3 V.

In the operating mode of this FPAA, the voltage on the
gate capacitor for all switches is the same. From Figure 3,
it is clear that the “off” switches do not pose a problem,
since any gate voltage selected at or above 0.3 V should
provide a sufficiently high impedance. However, the “on”
switch exhibits a decrease in quality as the gate voltage is
increased to Vpp. Thus, an operating gate voltage of 0.3 V
is deemed optimal for the current programming scheme.

Within the CABs, floating—gate transistors are used to set
bias voltages for the OTAs (see Fig. 5a), adjust the corner
frequencies on the capacitively coupled current conveyors
(C*s), and set muliplier coefficients in the vector-matrix
multipliers. In this manner, the floating—gate transistors
allow the characteristics of the computational elements to
be programmed on chip while still maintaining a compact
CAB.

3. COMPUTATIONAL ANALOG BLOCKS

The computational logic is organized in a compact com-
putational analog block (CAB) providing a naturally scal-
able architecture. CABs are tiled across the chip in a regular
mesh-type architecture with busses and local interconnects
in—between as shown in Figure 4a. A sample FPAA with
64 CABs on a single chip fabricated in TSMC 0.35-micron
is estimated to cover an area of approximately 36 mm?. Of
course, commercially viable FPAAs are forseen that have
100s if not 1000s of CABs based on this same architecture.

The programmable elements in the FPAA are floating—
gate transistors, and they are used for both the switch in-
terconnects and the computational logic as characterized
in [4]. Thus, a single programming infrastructure will be
used since all programmable elements will be floating—gate
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Fig. 4. (a) This is the overall block diagram for a large—scale FPAA. The switching interconnects are fully connectable crossbar networks built using
floating—gate transistors. (b) This is a Computational Analog Block (CAB) for an FPAA based on floating—gate devices. Here, each CAB contains a four-
by-four matrix multiplier, three wide-range operational transconductance amplifiers (OTAs), three fixed—value capacitors, a capcatively coupled current
conveyor (C'*), a peak detector, and two FET transistors. The input and output signals shown in this figure are routed to the rows of the switch matrix.

transistors.

Many example CABs can be imagined using this tech-
nology. Figure 4b shows one example CAB, whose func-
tionality is enhanced by a mixture of medium- and coarse—
grained computational blocks similar to many modern
FPGA designs. The computational blocks were carefully
selected to provide a sufficiently flexible, generic architec-
ture while optimizing certain frequently used signal pro-
cessing blocks. For generality, three operational transcon-
ductance amplifiers (OTAs) are included in each CAB.
OTAs have already been shown to be effective at imple-
menting a large class of systems including amplification, in-
tegration, filtering, multiplication, exponentiation, modula-
tion, and other linear and non-linear functions [14, 7, 15, 9].
In addition, the two FET devices provide the ability to per-
form logarithmic and exponential functions as well as con-
vert back and forth between current and voltage. The three
capacitors are fixed in value to minimize the size of the CAB
and are primarily used on the outputs of the OTASs; however,
they will be available for any purpose. The variable capac-
itor and/or current mirror banks found in some designs are
not needed here, because the use of floating—gate transistors
in the OTAs will give the user sufficient control in program-
ming the transconductance of the amplifiers [4, 7]. Elimi-
nating the capacitor banks creates a large savings in the area
required for each CAB.

The high-level computational blocks used in this de-
sign are a capacitively coupled current conveyor (C#) used

as a band-pass filter module and the 4 x 4 vector-matrix
multiplier block. In general, the C* module provides a
straightforward method of sub—banding an incoming sig-
nal. This allows Fourier analysis analagous to performing
a Fast Fourier Transform (FFT) in the digital domain. The
vector—matrix multiplier block allows the user to perform
a matrix transformation on the incoming signals. Together
these blocks can be used like a Fourier processor [16, 12].
In addition, a peak detector is added to each CAB.

4. TESTBED FPAA

The testbed FPAA based on floating—gate devices was
fabricated in a 0.5-micron, standard CMOS process. This
FPAA contains two CABs with a floating—gate crossbar
switch network connecting them [10]. The CAB design was
slightly smaller than the one outlined in Section 3 having a
C* bandpass filter module, 4 x 4 vector-matrix multiplier,
and three wide—range OTAs. However, this design is more
than sufficient to test the concept of FPAAs with floating—
gate devices and characterize the elements of the CAB.

As an initial example of the testbed system, a first-order
filter is implemented using an OTA in one of the CABs. Fig-
ure 5 shows how the circuit is mapped onto the FPAA using
five floating—gate switches. Once the switch network is con-
figured, the biasing floating—gate transistor is programmed
to vary the corner frequency of this first—order filter. The
frequency response is shown for several programmed cor-
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Fig. 5. (a) The sourcefollower configured using a floating—gate current
source. By programming the floating gate charge, the current is set in the
current mirror (the other half of the current mirror is internal to the wide—
range OTA) is fixed. Thus, the effective conductance can be modified for
each of the OTAs on chip. (b) Using the switch matrix, an OTA located in
one of the Computational Analog Blocks (CABS) is connected in a source—
follower configuration, and two external pins are routed to the OTA as the
input and output signals. The programmable biases illustrated in (a) are not
shown here for simplicity, but each OTA has a current mirror and floating—
gate current source that sets its bias.
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Fig. 6. Here, the frequency response of the source—follower circuit is
shown for several bias currents. An internal floating—gate transistor is used
as a current source to set the OTA’s bias. Injecting the floating—gate device,
increases the current and thus the bandwidth of this first order filter.

ner frequencies in Figure 6. The moderate gain in the lower
frequencies is due to the switches in the feedback loop of the
OTA. Ideally, the output node and the negative input node
would be directly connected. However, in the FPAA, this
path must be routed via the switch network, which means
that a minimum of two floating—gate switches will be in the
feedback loop. The gain can be minimized by injecting the
floating—gates of these switches to a lower charge, or if gain
is desired for a given application, then it can be set by pro-
gramming these switches to a higher charge.

In Figure 7, a second—order section filter is shown along
side the FPAA implementation. Once again, explicit capac-
itors are eliminated since the switch parasitics provide the
necessary capacitance. Using the floating—gate programm-
ble biases, the two OTAs in a source—follower configuration
were biased to the same level and the the third OTA’s bias
current was increased to adjust the Q—peak of the system.
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Fig. 7. (a) A second—order section filter can be implemented with two
OTA:s in a source—follower configuration and a third OTA that creates pos-
tive feedback. (b) Using the switch matrix, two OTAs within the CABs
are connected in a second—order section configuration. The programmable
biases shown in Figure 5(a) are not included here for simplicity, but each
OTA has a current mirror and floating—gate current source that sets its bias.

The frequency response for this circuit is shown in Figure 8.
As expected, the Q—peak increases as the bias current (e.g.,
conductance) increases.

For second-order functions such as the second-order
section and diff2 circuit, reasonable Q-peaks and filter
bandwidths require small bias currents (in the picoamp to
femtoamp range). While the floating—gate transistors can
set bias currents this low, the constraint becomes the ability
to accurately measure these currents while programming the
floating—gate transistors. Experimental results from Fig. 3
show a measurement threshold of 1 pA using present mea-
surement techniques. An important consideration here is
the relative sizing of the transistors that set the bias cur-
rents. The floating—gate transistor shown in Fig. 5a sets the
current through the nMOS current mirror (the other half of
the current mirror is internal to the OTA module). To set
small bias currents, it is preferrable to have the nFET and
floating—gate transistor sized larger than the current mirror
nFET internal to the OTA. In this configuration, the current
mirror functions as a current divider, and thus, very low bias
currents can be set by programming the floating—gate tran-
sistor to generate currents in the picoamp range.

Based on these testbed systems, one can start to imagine
a wide class of systems that can be implemented and con-
figured on FPAAs with many of these CABs on them. In
particular, differentiators, cascaded second—order sections,
bandpass filters, matrix transforms (including DCTs and
wavelet transforms), and frequency decomposition are all
well suited for this architecture. In the audio arena alone,
designs could be prototyped to implement forms of noise
suppression, audio enhancement, feature extraction, audi-
tory modelling, and simple audio array processing. Other
potential interest areas include communications signal con-
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Fig. 8. The simulated (a) and experimental (b) frequency response of a
second—order section filter is shown here. The Q parameter is adjusted by
increasing the bias current of the positive feedback amplifier via a floating—
gate current source.

ditioning (modulation, mixing, etc.), transform coding, and
nerual networks (with external training). Most of these sys-
tems rely on efficient sub—band processing; so, each CAB
has been designed with a C* bandpass to optimize this op-
eration. As shown in Fig. 9, the center frequency of the C'*
filter can be moved over a large range of frequencies.

5. CONCLUSION

Large-scale FPAAs based on floating—gate technologies
provide the necessary levels of programmability and func-
tionality to implement complex signal processing systems.
With orders of magnitude power consumption savings over
traditional digital approaches, this reconfigurable analog
technology offers an attractive alternative for implementing
advanced signal processing systems in low—power, embed-
ded devices. A testbed FPAA based on floating—gate circuits
has been built and inital results have been shown.
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