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Abstract— Practical log-domain filter circuits might have mul-
tiple operating points in regions in which the translinear element
does not obey the exponential law. In this paper, a method
is proposed to implement any filter by a log-domain circuit
that necessarily has a unique operating point. Any state-space
description of the filter is shown to have an equivalent description
that can be implemented by such a circuit. This methodology is
applied to the synthesis of Multiple-Input Translinear Element
(MITE) filters. As an example, shifted-companion-form (SCF)
filters are synthesized. Further, it is proved that the resulting
filters have a unique operating point.

I. INTRODUCTION

Log-domain filters are usually designed under the assump-
tion that the translinear element has ideal exponential char-
acteristics. However, this exponential characteristic is valid
in only a certain region of operation of the translinear el-
ement. Hence, though the ideal equations indicate that the
circuit has a unique operating point, it might happen that the
filter implementation leads to multiple operating points. The
existence of multiple operating points in log-domain filters
using MOSFETs in the subthreshold region is reported in [1].
However, no general procedure is given to synthesize log-
domain filters in a manner that avoids this phenomenon. We
propose a synthesis methodology using first-order low-pass
filters (FOLPFs for short). Synthesis using FOLPFs has the
advantage that the exponential state-space transformation is
already implicitly done in the FOLPF. Further, it will be shown
that the state-space decomposition can be done such that the
resulting circuit has a unique operating point.

II. MATHEMATICAL PRELIMINARIES

R
n×m denotes the set of all real n×m matrices. The sign

pattern of a real matrix A, denoted by sign(A), is defined
as the matrix obtained by replacing each element of A by its
sign i.e

[sign(A)]ij =











1 if Aij > 0,

−1 if Aij < 0,

0 if Aij = 0.

The qualitative class Q(A) of a real matrix A ∈ R
n×m is

defined by Q(A) = {B ∈ R
n×m|sign(B) = sign(A)}. A

square matrix A is a sign-nonsingular (SNS) matrix if every
matrix in its qualitative class is nonsingular.

III. CONSTRAINTS ON THE STATE-SPACE EQUATIONS

The general state-space form of any multiple-input multiple-
output (MIMO) filter is given by

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p and A,B,C and D

are matrices of appropriate dimensions.
Definition 1: The state-space system in (1) is said to be

implementable by FOLPFs if A has negative diagonal entries.
Clearly, this means that one can write (1) (in terms of low-pass
filters) as

ẋ + Ex = A′x + Bu

y = Cx + Du
(2)

where E is a diagonal matrix with positive diagonal and A′ =
A + E has zero diagonal.

Definition 2: The state-space system in (1) is said to have
a sign-unique operating point if A is a SNS matrix.

The motivation behind the above definition is seen in
Theorem 1 in [2], a slightly modified version of which is the
following:

Theorem 1: Let U be a open convex subset of R
n and f :

U ⊆ R
n 7→ R

n a C1 function such that all the elements of
the Jacobian matrix Df(x) of f have the same sign for all
x ∈ U . Then, f is injective on U if Df(x) is a SNS matrix.

It will be seen that solving for the operating point of a
Multiple-Input Translinear Element (MITE) implementation of
(1) requires the solution of a nonlinear equation of the form
f(V ) = 0 where f : (0, Vdd)

n 7→ R
n is such that the partial

derivative ∂fi

∂xj
has the same sign as Aij . Hence, the operating

point is unique if A is a SNS matrix. Therefore, all state-space
systems will be required to have a sign-unique operating point.

A. Example: Shifted-Companion-Form Filters

The shifted-companion-form (SCF) [3] lends itself easily to
synthesis by the proposed methodology. The MITE implemen-
tation of a SCF state-space system is particularly simple in the
case where the transmission zeros are formed by summation
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of the state variables. The (A,B,C,D) matrices from (1) of
this single-input single-output system are [3]

A =







−an−1−α −an−2 −an−3 ··· −a1 −a0

1 −α 0 ··· 0 0
0 1 −α ··· 0 0

...
0 0 0 ··· 1 −α






, (3)

B =
[

1 0 · · · 0
]t

, C =
[

bn−1 bn−2 · · · b0

]

, and
D = d (a scalar).
The above state-space realization is obtained from the transfer
function

Y (s)

U(s)
=

bn−1(s + α)n−1 + bn−2(s + α)n−2 + · · · b0

(s + α)n + an−1(s + α)n−1 + · · · a0
+ d

Theorem 2: The shifted companion matrix A in (3) is a
SNS matrix if α > 0 and a0, a1 . . . an−1 are nonnegative.
If α = 0, then the companion matrix A is a SNS matrix if
a0 6= 0.

Proof : Let α > 0 and a0, a1 . . . an−1 be nonnegative. It
suffices to show that Mx = 0 ⇒ x = 0 for any M ∈ Q(A).
Mx = 0 implies that

|Mnn−1|xn−1 = |Mnn|xn

|Mn−1n−2|xn−2 = |Mn−1n−1|xn−1

...
|M21|x1 = |M22|x2

|M11|x1 + |M12|x2 + · · · |M1n|xn = 0

(4)

It should be noted that all the elements of M above (except the
last row) and M11 are necessarily nonzero. Clearly, we have
xi = βixn for i = 1, 2, . . . n with βi > 0. The last equation
in (4) yields xn

∑n
i=1|M1i|βi = 0, which implies that xn and

hence x is zero. The proof is similar and easier when α = 0. �

To show that constraining A in (1) to be a SNS matrix does
not restrict the set of transfer functions obtainable from (1),
we prove the following result:

Theorem 3: There exists a SNS matrix J with negative
diagonal entries similar to any Hurwitz matrix A. In particular,
J can be written as a direct sum (i.e a block diagonal matrix)
of shifted-companion matrices of the type shown in (3) (with
α > 0)

Proof : J can be chosen to be the (real) Jordan canonical
form of A [4]. A more useful SNS matrix similar to a
Hurwitz matrix A is obtained by the following method:
Let α > 0 be such that −α > maxλ∈σ(A) <e(λ) where
σ(A) is the set of eigenvalues of A. Define A′ = A + αI .
Clearly, σ(A′) = {λ + α|λ ∈ σ(A)} and hence, by the
definition of α, A′ is Hurwitz. Taking the rational form or
the rational canonical form of A′ [4], we obtain a matrix
J ′ that is a direct sum of companion matrices of the form
depicted in (3) (with α = 0). It follows from the assumption
that A′ is Hurwitz that each block companion matrix in J ′ is
Hurwitz. Hence, the first row of each block is nonnegative. If
A′ = S−1J ′S, then A = A′ −αI = S−1(J ′ −αI)S. Clearly,
J = J ′ − αI is a direct sum of shifted-companion matrices

each of which satisfies the conditions of Theorem 2 so that
J is a SNS matrix with negative diagonal entries. �

Because of the above theorem, it can be assumed that the
given state-space system in (1) has a sign-unique operating
point and is implementable by FOLPFs. A synthesis procedure
for implementing such a state-space system is given below:

IV. SYNTHESIS PROCEDURE

Step 1 (Dimensionalization): The variables will be first
scaled [5] so that each signal is replaced by a ratio of a
signal current to a unit current (which gets cancelled out as
the system is linear). The derivative d

dt
is replaced by τ d

dt
.

Hence, each state-space equation can be written as:

τ
dIxi

dt
+EiIxi

=

n
∑

j=1

A′
ijIxj

+

m
∑

k=1

BikIuk
i = 1, 2, . . . n (5)

Iyi
=

n
∑

j=1

CijIxj
+

m
∑

k=1

DikIuk
i = 1, 2, . . . p (6)

Step 2 (FOLPF implementation): A MITE FOLPF [6], [5]
used in the ith first-order equation in (5) is shown in Fig. 1(a).
The MITE network satisfies the equation:

CUT

κ

dIxi

dt
+ Iτi

Ixi
= I ′τi

Iini
(7)

Fix a value of C and define Iτ = CUT

κτ
. Define Iτi

= EiIτ .
Choose a αi > 0 (typically the magnitudes of one of the
coefficients in the right hand side of (5)) and define I ′

τi
=

αiIτ . Hence, the required input current Iini
to the filter is

given by Iini
=

∑n
j=1

A′

ij

αi
Ixj

+
∑m

k=1
Bik

αi
Iuk

.

Step 3 (Multiplier implementation): The multiplications
(

A′

ij

αi
)Ixj

,(Bik

αi
)Iuk

,CijIxj
,DikIuk

in (5) and (6) are
implemented through straightforward methods given in
[5]. The inputs Iuk

are passed through diode-connected
MITEs to generate the voltages Vuk

as shown in Fig. 1(b).
Hence, Ixi

is associated with a voltage Vxi
(at the output

MITE of the ith FOLPF shown in Fig. 1(a)) and similarly, Iuk

is associated with Vuk
. The circuits for (

A′

ij

αi
)Ixj

,(Bik

αi
)Iuk

,
shown respectively in Fig. 1(c) and Fig. 1(d), are in terms
of these voltages. The products for the output currents are
generated in an identical fashion.

Step 4 (Summation): The inputs Iini
to the FOLPFs and

the outputs Iyi
are found simply by using KCL, through a

current mirror if needed as shown in Fig. 1(c) and Fig. 1(d).
Also, the output MITE of each FOLPF can be removed unless
the state variable Ixi

is itself one of the output currents
Iyi

. Consolidation [5] can be used to remove redundancies
whenever possible.

A. Example : SCF filter synthesis

For α > 0, the SCF state-space equations are implementable
by FOLPFs and have a sign-unique operating point. Though
the synthesis procedure detailed above can be used directly, a
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(a) (b)

(c) (d)

Fig. 1. The circuit blocks used in implementing the first-order equations in (5). (a) The MITE low-pass filter used in the ith equation in (5). (b) The MITE

circuits for generating the voltages Vref and Vuk
used in the multipliers. (c) The MITE circuits implementing the product (

A′

ij

αi
)Ixj

for A′

ij > 0 and

A′

ij < 0. (d) The MITE circuits implementing the product ( Bik

αi
)Iuk

for Bik > 0 and Bik < 0.

convenient scaling of the state variables before applying the
synthesis procedure results in a much simpler topology. Define
T = diag(1, an−2, an−3, . . . a0). The SCF system in Section
III-A is transformed according to A′ = TAT−1, B′ = TB,
C ′ = CT−1, and D′ = D. The modified system is given by
the following equations:

ẋ1 + (α + an−1)x1 = u − x2 − x3 · · · − xn

ẋ2 + αx2 = an−2x1

ẋ3 + αx3 =
an−3

an−2
x2

...

ẋn + αxn =
a0

a1
xn−1

y = bn−1x1 +
bn−2

an−2
x2 +

bn−3

an−3
x3 + · · ·

b0

a0
xn + du

It should be noted that the state variable equations are a cas-
cade of FOLPFs with input u−x2−x3 · · ·−xn. Consolidation
can be applied to a cascade of FOLPFs since the output MITE
of a FOLPF and the input MITE of the FOLPF following it
can be removed and the corresponding voltages connected,
as shown in Fig. 2. The whole generic SCF filter is shown
in Fig. 2. Note that the required multiplier blocks are easily
synthesized as described in the synthesis procedure. Also, this
block can be used as a “universal active filter” to generate
filters of any type and any order. (For those filters that do
not pass DC, a offset needs to be applied at the output so
that the requirement of positive currents through the MITEs
is satisfied.)

V. UNIQUENESS OF THE OPERATING POINT

For determining conditions on the synthesized filter such
that the operating point is unique, we need a general model
for a MITE that covers all regions of operation of the
basic translinear element (BJT, MOSFET etc.) constituting
the MITE. Based on a model for a MITE that assumes the
weighted sum of voltages to be ideal, sufficient conditions
on the MITE network topology for the operating point to
be unique have been given elsewhere [7]. As only 2-input
MITEs are required for this synthesis methodology, even the
requirement of ideal weighted summation can be discarded.
For the nonideal model of the MITE in Fig. 3, the current
through the input gates will be required to zero. The drain
current is assumed to be of the form I = h(V1, V2, Vd)
where h : (0, Vdd)

3 7→ (0,∞) is a C1 map satisfying :
∀ (V1, V2, Vd) ∈ (0, Vdd)

3

Transconductance 1 gm1
,

∂h

∂V1
> 0,

Transconductance 2 gm2
,

∂h

∂V2
> 0,

Output conductance go ,
∂h

∂Vd

≥ 0

(8)

In a floating-gate implementation, this is nothing more than the
assumption that the (nonideal) weighted summation is mono-
tonically increasing along with the requirements of positive
transconductance and nonnegative output conductance of the
MOSFET. We can give a similar form for the drain current
through a PFET (in a current mirror or a current source) taking
care about the signs for the different conductances. A (brief)
proof of the uniqueness of the operating point is as follows:
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Fig. 2. A generic shifted-companion-form filter. It can be used to generate any linear transfer function. The poles and zeros can be tuned using the bias
currents. The multiplier block is implemented as described in Section IV.

Theorem 4: The DC MITE circuit realizing (1) according
to the synthesis procedure in Section IV has at most one
operating point (with the operating point voltages in (0, Vdd))
if A is a SNS matrix.

Proof : Since all the elements (MITEs, PFETs) are voltage
controlled, we can write the nonlinear node equation [8]:
f(V ) = 0 where f : (0, Vdd)

k 7→ R
k, V being the vector of

drain-to-ground voltages of the MITEs with common drains.
It should be noted that the MITEs that are the outputs of
products in (6) do not affect the operating point uniqueness.
By Theorem 1, it suffices to prove that the Jacobian Df(V )
does not change sign patterns for V ∈ (0, Vdd)

n and that Df

is a SNS matrix. It can be seen from the way the MITEs are
connected that (Df(V ))ij has a sign independent of V . Df is
nothing but the node-admittance matrix of the linear network
N obtained by setting the DC sources to zero and replacing
the nonlinear elements (PFETs, MITEs) by their small-signal
equivalent circuits according to (8). Consider the set N of
linear networks obtained by changing the magnitude alone
of different transconductances and conductances in N . Any
matrix M ∈ Q(Df) is obtained as the node-admittance matrix
of a element N ′ of N . To show that det(M) 6= 0, it suffices
to prove that the corresponding network has a unique solution
in which the node-to-ground voltages V are zero. We make
the following (easily provable) observations about voltages in
N ′ (which correspond to the voltages in Fig. 1):

1) The voltages Vuk
, V ′

ij , Vik and Vref are zero.
2) Wherever the voltage Vini

appears in the (linear) node
equations, it can be replaced by βiiVxi

where βii > 0.
3) If K = sign(A′), then for some arbitrary βij > 0,

Vini
= −

∑n
j=1
j 6=i

βijKijVxj

Combining the results in 2) and 3), it is clear that LV = 0
where V = (Vx1

, Vx2
, . . . Vxn

)t and L ∈ R
n×n is given by

Lii = βii and for i 6= j, Lij = βijKij . By the definition
of K, L is in Q(A). Since A is a SNS matrix, det(L) 6= 0
and hence V = 0, which implies that all the node-to-ground
voltages (in N ′) are zero. �

Fig. 3. Symbol for a 2-input Multiple Input Translinear Element (MITE).
Ideally, it should obey the law I = Is exp( κ

UT
(V1 + V2)).

VI. CONCLUSION

Conditions on the state-space equations for log-domain
filters that ensure the uniqueness of the operating point of the
resulting circuit have been presented. A synthesis procedure
using first-order low-pass filters to implement any log-domain
filter has been described. It is proved that the operating
point for the synthesized filter is unique. As an example,
shifted-companion-form filters of arbitrary type and order are
synthesized.
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