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Abstract— A procedure for synthesizing multiple-input
translinear element (MITE) networks that implement a given
system of translinear–loop equations (STLE) is presented. The
minimum number of MITEs required for implementing the
STLE, which is equal to the number of current variables in the
STLE, is attained. The number of input gates of the MITEs is
minimal amongst those MITE networks that satisfy the STLE
and have the minimum number of MITEs. The synthesized
MITE networks have an unique operating point and, in many
cases, the network is guaranteed to be stable in a particular
sense. This synthesis procedure exploits the relationship between
MITE product–of–power–law (POPL) networks and linear
diophantine equations which is explored in detail here.

I. INTRODUCTION

Translinear circuits are suitable for implementing a wide
variety of nonlinear (and linear) systems that can be written as
differential equations [1] or as static functions [2]. In multiple-
input translinear element (MITE) networks [3], the voltage
addition in a translinear loop is transformed into voltage
addition through a capacitor voltage summer. The n–input
MITE, as represented in Figure. 1(a), is a (n + 1)-port circuit
element characterized by

Ii = 0 (i = 1, 2, . . . , n)

In+1 = Is exp [κ
(w1V1 + w2V2 + · · ·wnVn)

UT
],

(1)

where Ii and Vi are the port currents and port voltages. Is

is a pre-exponential scaling current and UT = kT/q is the
thermal voltage. κ is a dimensionless scaling factor. The wi

are nonnegative weight coefficients, usually integers. w �∑n
i=1 wi is called the fan–in of the MITE [3].
The basic principle of translinear circuits, the Gilbert

translinear principle [2], states that, in a closed loop of
identical translinear elements comprising an equal number of
clockwise and anticlockwise elements,

∏
n∈CW

In =
∏

n∈ACW

In (2)

where CW and ACW are the sets of the indices of the
elements in clockwise and anticlockwise directions, respec-
tively. Generalizing this relationship, we define a translinear–
loop equation as a relationship between (positive) variables
I1, I2, . . . Im of the form

∏m
i=1 Iai

i = 1, where the ais are
integers such that

∑m
i=1 ai = 0. It should be noted that this

definition does not require the presence of actual translinear

loops. The synthesis of MITE implementations of translinear–
loop equations (or a system thereof), and the equivalent
product–of–power–law (POPL) equations is discussed in [3]–
[6]. This paper describes the synthesis of MITE networks
satisfying a given system of translinear–loop equations. The
resultant MITE network is optimal with respect to the number
of MITEs and the fan–in of the MITES in a certain sense that
will be described. This will be followed up with the synthesis
subject to constraints in [7]. The theory of linear diophantine
equations [8]–[10] is used in the synthesis.

II. MATHEMATICAL PRELIMINARIES

R, Q, Z, and N denote the set of real numbers, rationals,
integers, and nonnegative integers, respectively. If m ≤ n, [m :
n] is the set {m,m+1, . . . , n}. The set of all m×n matrices
whose elements are in F ⊆ R is denoted by Mm,n(F). If
A ∈ Mm,n(F), α ⊆ [1 : m], and β ⊆ [1 : n], then A(α, β)
is the matrix formed by the rows and columns of A indexed
by α and β, respectively. 1n denotes the n × 1 vector with
all elements being 1. If f : A → B, and if x = [xi] ∈ An,
then f(x) denotes the vector [f(xi)] ∈ Bn. If x = [xi]mi=1

and y = [yi]mi=1, then the notation x � y means that xi ≥ yi

for all i ∈ [1 : m] and that there exists a j ∈ [1 : m] so that
xj > yj .

III. TRANSLINEAR LOOPS

The implementation of a system of translinear loop equa-
tions using MITE circuits is now discussed [11]. A system of
translinear–loop equations (STLE) is defined as a relationship
between current variables I1, I2, . . . , Im of the form

m∏
j=1

I
aij

j = 1, i ∈ [1 : l] (3)

The matrix A = [aij ] represents the powers to which the
currents are raised and will be referred to as the translinear
loop matrix. Since the powers of interest usually are rational
numbers, it follows that without loss of generality, A ∈
Ml,m(Z) can be assumed. Dimensional consistency requires
A1m = 0. Taking logarithms on both sides of Eq. (3),

A log(I) = 0 (4)

Clearly, it can be assumed that there are no redundant equa-
tions in Eq. (3), implying that the rows of A are linearly
independent. Hence the following is assumed:
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Fig. 1. (a) Symbol for a n-input multiple-input translinear element (MITE). (b) The canonical MITE network used to implement STLE Eq. (3). The voltages
V1, V2, . . . , Vn are generated by “diode” connecting them to the respective drains of the input MITEs with currents I1, I2, . . . , In.

Convention 1: If A is a translinear loop matrix, then A is
full-row-rank; i.e., rankA = l.

A. Input-Output Separation

Since rank(A) = l, l linearly independent columns of
A, indexed by γ, can be chosen. If β = [1 : l], then the
matrix A(β, γ) is a nonsingular square matrix. Eq. (4) can
thus be written as A(β, γ) log(I(γ))+A(β, γ′) log(I(γ′)) = 0,
where by definition, the vector I(γ′) represents the currents
in I indexed by the indices not in γ. Thus, log(I(γ)) =
−A(β, γ)−1A(β, γ′) log(I(γ′)). This means that the n cur-
rents in I(γ′) can be taken to be inputs and the l currents in
I(γ) to be outputs to the MITE network. This formulation is
nothing but the POPL formulation of [11], in which the output
currents are written as products of the input currents raised
to different powers. As the criteria ensuring the uniqueness
[7] and the stability [4] of the operating point of the POPL
network require a separation of the currents into inputs and
outputs, the following convention will be followed:

Convention 2: The currents in the STLE in Eq. (3)
are numbered so that I1, I2, . . . , In are the inputs and
In+1, In+2, . . . , Im are the outputs, where n = m− l. For this
to be valid, A(β, γ) must be nonsingular, where γ = [n + 1 :
m] and β = [1 : l].

IV. THE SYNTHESIS PROBLEM

The objective is to find a suitable connectivity ma-
trix Z ∈ Mm,n, which describes the canonical MITE
network in Figure. 1(b), when the translinear loop ma-
trix A ∈ Ml,m(Z) is given. Hence, it is desired that
{Is exp(κU/UT) |U = ZV for some V ∈ Rn}, representing
the set-theoretic relation determined by Z, be the same as
{I ∈ Rm | A log(I) = 0}, which represents the STLE.
Consider the vector U ∈ Rm defined by U = (UT/κ) log(I)−
(UT/κ) log(Is)1m. Clearly, I satisfies A log(I) = 0 iff
AU = (UT/κ)A log(I)−(UT/κ) log(Is)A1m = 0. We require
{U | U = ZV for some V ∈ Rn} = {U ∈ Rm | AU = 0}.
The former is the range, Im(Z), of Z and the latter is the ker-
nel, ker(A), of A. Hence, Im(Z) = ker(A) is desired. From
elementary linear algebra, one can show that Im(Z) = ker(A)
iff AZ = 0 and rank(Z) = nullity(A). If Conventions 1 and
2 are taken into account, then the rank(Z) = nullity(A) = n

requirement can be shown to reduce to Z being of the form[
X
Y

]
, where X ∈ Mn,n(N) is nonsingular. X and Y are

called the input and output connectivity matrices, respectively.
Taking into account these constraints as well as the ones in
[4], [7], the synthesis problem can be stated as

Given A ∈ Ml,m(Z). If γ = [n + 1 : m] and β = [1 : l],
A(β, γ) is nonsingular.

Problem Find a matrix Z ∈ Mm,n(N) satisfying:
P1 AZ = 0.
P2 Z1n = w1m for some w ∈ N. This ensures that the

MITE network is balanced [3], [11].
P3 If α = [1 : n], then X = Z(α, α) is nonsingular. This

implies that rank(Z) = nullity(A).
P4 X is a P0 matrix; i.e., all the principal minors of

X are nonnegative. This (along with P3) ensures the
uniqueness of the operating point [7].

P5 X is D–stable; i.e., the eigenvalues of DX lie in the
right–half s–plane for all diagonal matrices D with a
positive diagonal. This implies that the MITE network
is stable in the sense described in [4].

Conditions P4 and P5 assume that voltage Vi is connected to
the drain of the MITE with current Ii, for i ∈ [1 : n]. Matching
issues can be taken care of by programming the floating-gates.

Some of the important parameters that need to be minimized
are the number of MITEs and the fan–in of each MITE.
Increasing either of these parameters usually results in a
increase in area. For the same floating–gate capacitance value,
if the fan–in is increased, the maximum frequency of operation
of the circuit decreases. The synthesis methods in [3]–[5]
are mainly for implementing each equation in the STLE
separately. Consolidation is then used to remove redundant
MITEs. If full consolidation is not possible, then the network
has copies of the input currents and hence the procedure does
not minimize the number of MITEs. On the other hand, these
methods can potentially reduce the fan–in, and it follows from
[3], [4] that it can be reduced to the minimum possible value
of 2. However, there is no procedure to minimize the number
of MITEs once the fan–in is fixed at some value.

The procedure presented here solves the STLE as a whole
rather than solving each equation separately. Further,

1) The minimum number of MITEs required for imple-
menting Eq. (3), viz. m, is attained.
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2) The minimum fan–in wmin is obtained amongst all MITE
networks with m MITEs implementing the STLE.

V. OPERATING POINT UNIQUENESS AND STABILITY

Condition P4 is not robust in the sense that a small pertur-
bation of the elements can lead to some principal minors of X
(the zero ones) to become nonnegative. This can be avoided by
requiring X to be a P–matrix [12], in which all the principal
minors are positive (not just nonnegative). Hence, for synthesis
purposes, instead of P4, the condition P4́ below shall be used:

P4´ X is a P–matrix; i.e., all principal minors of X are
positive.

An algorithm of order O(2n) for testing P4́ has been proposed
[13] which is used in the synthesis procedure. The condition
P5; i.e., X is D–stable is actually a sufficient condition for P4
(and P3) but does not imply that X is a P–matrix. However, no
finitely verifiable necessary and sufficient condition exists for
checking D–stability [12], though there are useful sufficient
conditions [14]. A synthesis procedure for POPL networks,
which is not necessarily minimal, but which satisfies P1-P5 has
also been proposed [6]. This method is applicable to STLEs
and can be used to get an estimate for wmin.

VI. SOLUTION METHODOLOGY

The solution(s) of the synthesis problem taking into account
conditions P1, P2, and P3 is first discussed.

If Z is written in terms of its columns; i.e., Z =
[z1 z2 . . . zn] and noting that AZ = [Az1 Az2 . . . Azn], the
problem (P1, P2, and P3) is equivalent to finding a set {zi}n

i=1

with zi ∈ Nm so that the following are satisfied:

R1 Azi = 0 i ∈ [1 : n]
R2 Σn

i=1zi = w1m

R3 The vectors {zi} are linearly independent. This is equiv-
alent to the vectors {xi} being linearly independent,
where xi = zi([1 : n]).

Theorem 1 (Completion Theorem): If z1, z2, . . . , zn−1

with zi ∈ Nm are such that

A1 Azi = 0 i ∈ [1 : n − 1]
A2 The vectors {z1, z2, . . . , zn−1,1m} are linearly inde-

pendent,

then z1, z2, . . . , zn satisfies R1, R2, and R3 with w =
‖∑n−1

i=1 zi‖∞ � max
∑n−1

i=1 zi, where zn = w1m −∑n−1
i=1 zi.

Proof : Let S = {z1, z2, . . . , zn}. zn ∈ Nm by the
definition of w. Clearly, Azn = wA1m − ∑n−1

i=1 Azi = 0.
Hence S satisfies R1. R2 is valid by the definition of zn. To
check R3, let

∑n
i=1 αizi = 0. Using the definition of zn, this

is equivalent to
∑n−1

i=1 (αi −αn)zi +αnw1m = 0. By A2, we
have αnw = 0 and αi − αn = 0 for i ∈ [1 : n − 1]. Since
w �= 0, we have αn = 0, which implies αi = 0. Hence R3 is
also satisfied by S. �

Hence the problem of satisfying R1, R2, and R3 reduces
to finding z1, z2, . . . zn−1 satisfying A1 and A2. Since we
are interested in minimizing the fan–in w, it seems intuitively
obvious that it suffices to “minimize” the zi in some sense.
This notion is made precise in the following.

A. Linear Diophantine Equations

Let us consider the linear Diophantine equation

Given A ∈ Ml,m(N)
Problem Find S = {z ∈ Nm| Az = 0}

There exists a finite set H ⊂ S, called the Hilbert basis or the
set of minimal solutions of the diophantine equation, such that
every element of S can be written as a nonnegative integral
combination of the elements of H [8], [9]. The elements of H
are minimal in the sense that if u ∈ H, then there is no other
v ∈ S, v �= 0 such that u � v.

Various algorithms exist for finding the set of minimal
solutions [10]. The algorithm used here is the so-called ABCD
algorithm [8], [9]. A brief description follows.

Starting with the standard basis for Nm, if at some stage
x = [xi] ∈ Nm is not a solution,

C1 If Ax.Aej < 0, then increment xj by 1.

If after incrementing, x is greater than ( i.e., �) any previous
solution, then it is removed. Of course, if Ax = 0, it is
added to the minimal solution set. The process stops after a
finite number of steps and all and only the minimal solutions
are found. The actual algorithm used here is a more efficient
refinement of the above idea [8], [9].

B. Existence and Construction of Solution

The following theorem shows that minimal fan–in POPL
MITE networks can be constructed using the vectors in the
minimal solution set H.

Theorem 2 (Construction Theorem):

1) There exist vectors z1, z2, . . . , zn−1 with zi ∈ H satis-
fying A1 and A2.

2) The minimum possible fan–in is also obtained as wmin =
min{‖∑n−1

i=1 zi‖∞| zi ∈ H}; i.e., the fan–in can be
minimized by appropriately choosing elements of H,
which is a finite set compared to the solution set S =
{z ∈ Nm| Az = 0}, which is infinite.

Proof of 1: By Convention 1, rank(A) = l, hence
nullity(A) = m − l = n. Since A ∈ Ml,m(Q), it can
be considered as a linear transformation from Qm onto Ql.
Hence, ker(A) = {z ∈ Qm| Az = 0}, has dimension n.
Since A1m = 0, a basis for {z ∈ Qm| Az = 0} can
be constructed by suitably appending n − 1 more vectors
z′1, z

′
2, . . . , z

′
n−1. It is clear that by multiplying all the z′is

by suitable integers, we can assume z′i ∈ Zm. Let −ci be
the most negative integer amongst the components of z′i.
The set {z′1 + c11m, z′2 + c21m, . . . , z′n−1 + cn−11m,1m} is
clearly a subset of Nm and can be easily shown to be linearly
independent. Since A(z′i + ci1m) = Az′i + ciA1m = 0, it has
been shown that we can choose {zi}n−1

i=1 ⊂ Nm satisfying A1
and A2.

By the definition of H, each zi constructed above can
be written as a nonnegative linear combination of elements
v1,v2, . . .vk of H. Hence zi =

∑k
j=1 αijvj , where αij ∈ N.

Let xi = zi([1 : n]) and ui = vi([1 : n]). By R3,
det[x1 x2 · · ·xn−1 1n] �= 0. Since the determinant is a linear
function of each of the column vectors, det[x1x2 · · ·xn−11n]

2824

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 2, 2009 at 08:04 from IEEE Xplore.  Restrictions apply.



can be written as a linear combination of determinants of
the form det[ui1 ui2 · · · uin−1 1n], where i1, i2, . . . , in−1

are integers between 1 and k. We cannot have all these
determinants to be zero, else det[x1 x2 · · ·xn−1 1n] = 0.
Hence there exist vectors vi1 ,vi2 , . . . ,vin−1 in H satisfying
A1 and A2. This proves part 1.
Proof of 2: Let {z1, z2, . . . , zn−1} ⊂ Nm satisfying A1 and
A2 have the minimum fan–in; i.e., ‖∑n−1

i=1 zi‖∞ = wmin. If
{zi}n−1

i=1 is not a subset of H, then since A1 is satisfied, each
zi =

∑k
j=1 αijvj , where αij ∈ N. Proceeding as in the pre-

vious part, it can be shown that for some i1, i2, . . . , in−1, the
vectors vi1 ,vi2 , . . . ,vin−1 satisfy A1 and A2. However, since
vij

is part of the nonnegative linear expansion of zj , it must
be true that αjij

> 0. Hence, zj � vij
, which implies that∑n−1

j=1 zj � ∑n−1
j=1 vij

. Since, each of the vectors involved
are nonnegative, it is clear that wmin ≥ ‖∑n−1

j=1 vij
‖∞. By the

definition of wmin, ‖∑n−1
j=1 vij

‖∞ = wmin. �
The above theorem provides a method to generate MITE
networks with minimum fan–in.

VII. SYNTHESIS ALGORITHM

Given A ∈ Ml,m(Z). A(β, γ) is nonsingular.

Initialize the fan–in value w by using the fan–in obtained
from the algorithm in [6]. Let the set of minimal connectivity
matrices V := ∅, initially.

1) Find H, the finite set of minimal solutions of Az = 0
using the ABCD algorithm [8], [9].

2) Choose S′ := {z1, z2, . . . , zn−1} ⊂ H.
3) Find the fan–in w′ := ‖∑n−1

i=1 zi‖∞. If w′ > w, go to
Step 2.

4) Check if S′ satisfies A2. If no, go to Step 2 else use
Theorem 1 to find S := {zi}n

i=1 satisfying R1, R2 and
R3.

5) Check if a permutation σ of [1 : n] exists such that the
matrix Z := [zσ(1) zσ(2) · · · zσ(n)] satisfies P4 .́ If not,
go to Step 2. If yes, let B be the set of such Z matrices
satisfying P4 .́

6) If w′ = w, then V := V ⋃B. If w′ < w, then V := B.
7) If all possibilities of S′ in Step 2 are not exhausted,

repeat the sequence from Step 2.
8) Check if X = Z([1 : n], [1 : n]) satisfies the sufficiency

and necessary conditions for D–stability [12], [14] for
all Z ∈ V . If X is shown to be not D–stable, V :=
V \ {Z}.

VIII. EXAMPLE

The STLE is I1I
−2
2 I2

3I−1
6 = 1; I1I

−2
2 I3I5I

−1
7 = 1;

I1I
−2
2 I2

4I−1
8 = 1, which is required in the construction of

a rms-to-dc converter [5]. Here

A =




1 −2 2 0 0 −1 0 0
1 −2 1 0 1 0 −1 0
1 −2 0 2 0 0 0 −1




The minimal solutions set H (written as a matrix) and
corresponding connectivity matrix Z are found to be

H =

2
666666664

2 0 0 0 0 1 1 0
1 1 1 0 0 0 1 0
0 1 2 1 0 0 1 0
0 1 1 0 0 0 1 1
0 1 0 0 1 0 0 0
0 0 2 2 0 1 1 0
0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 2

3
777777775

Z =

2
666666664

2 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 2 0 0
0 0 1 0 1
0 0 0 2 0

3
777777775

Clearly, wmin = 2. It can be verified that this Z satisfies
P1-P5. Synthesis by means of other methods [5], [6] gives a
non-minimal fan–in of 3.

IX. CONCLUSION

A new synthesis procedure for implementing systems of
translinear–loop equations using MITEs is presented. This
procedure results in minimal number of MITEs and minimal
fan–in (for the minimum number of MITEs). The relationship
between minimal fan–in of MITE networks and minimal
solutions of linear Diophantine equations is shown. The result-
ing MITE networks have a unique operating point and their
unconditional stability is tested with available methods.
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