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Abstract— A 2-MITE is a multiple-input translinear element
with two input gates. In this paper, different properties of
networks of 2-MITEs are derived, especially in the case of
product–of–power–law (POPL) networks, in which the output
currents are products of the inputs raised to different powers. It
is found that conditions ensuring the uniqueness and stability of
the operating point in 2-MITE networks are less stringent than
those for MITE networks with higher number of input gates.
This simplifies the synthesis of these networks considerably. A
graph-theoretic approach to the analysis of 2-MITE networks is
presented. Necessary conditions for a set of power-law equations
to be implementable by 2-MITE networks are derived. Sufficient
conditions for the same are presented for the case of POPL
networks with one output.

I. INTRODUCTION

A multiple-input translinear element (MITE) is a gener-
alization of the basic translinear element (BJT in forward-
active region or a MOSFET in subthreshold region) to the
case of multiple input voltages; the output current Id in a
MITE is an exponential of a weighted sum of input voltages.
Mathematically,

Id = Is exp [κ
(w1V1 + w2V2 + · · ·wnVn)

UT
], (1)

Is is a scaling current, κ is a dimensionless coefficient and
both will be taken to be the same for all MITEs under ideal
conditions. UT is the thermal voltage. The wi’s are nonnegative
integer weight coefficients. w �

∑n
i=1 wi is called the fan–

in of the MITE [1]. This paper is concerned with 2-MITEs
which are defined as MITEs with fan–in 2. Applications of
MITE networks are discussed in [2]–[4].

Any translinear circuit, at the fundamental level, requires
the synthesis of translinear loops. Mathematically speaking,
the synthesis of the following set of equations is required:

Ioi =
n∏

j=1

I
Λij

j , i = 1, 2, . . . , m (2)

where
∑m

j=1 Λij = 1. A standard circuit called the product–
of–power–law (POPL) network, shown in Fig. 1(a), is used to
implement these kinds of equations [1]. Two features of this
network contributing to its size are the number of MITEs and
the number of input gates (the fan–in) of a MITE. The require-
ment of κ being the same for all MITEs translates to all the
MITEs in a MITE network having the same fan–in [5]. Syn-
thesis procedures that aim at reducing the number of MITEs
are described in [6], [7]. This paper, in contrast, concentrates
on MITE networks with the minimum possible fan–in, namely

2. MITE circuits designed using the ideal expressions do not
always have unique or stable operating points [8], [9]. These
properties are shown to be automatically satisfied for 2-MITE
POPL networks (under some mild assumptions) in Section
III. 2-MITE POPL networks are then analyzed using a graph-
theoretic formulation and shown to belong to a particular class
of digraphs in Section IV. Necessary conditions for a power-
matrix Λ to be implementable as a 2-MITE POPL network are
then developed in Section V. They are extended to sufficient
conditions in the case of a POPL MITE network with a single
output in Section VI.

II. MATHEMATICAL PRELIMINARIES

The terminology for directed graphs (digraphs) used here
follows [10]. A 1-factor of a digraph G is a spanning subgraph
of G which is regular of degree 1 (i.e., both in-degree and out-
degree is 1 for all vertices). A 1-factorial connection from i to
j of a digraph G is a spanning subgraph G which contains a
directed path P from i to j and a set of vertex-disjoint directed
circuits that include all the vertices of G other than those in
P . The weight w(H) of a subgraph H of a weighted digraph
G is the product of weights of edges in H . 1n denotes the
n × 1 vector with all elements being 1.

III. UNIQUENESS AND STABILITY OF OPERATING POINT

In this section, we show that 2-MITE POPL networks have
a unique and stable operating point under the assumption that
its input connectivity matrix has a positive diagonal.

A POPL network is determined by the input-connectivity
matrix X = [xij ] and the output connectivity matrix Y =
[yij ], as shown in Fig. 1(a). An input-output relationship of
the form given by Eq. (2) with Λ = Y X−1 results when X
is nonsingular. In particular, a 2-MITE POPL network also
satisfies

1) X1n = 21n and Y 1n = 21m (as the fan–in is two).
2) xij , yij ∈ {0, 1, 2} (since xij and yij are nonnegative

integers).

The synthesis problem is the reverse process, that of finding
suitable X and Y given Λ. We will say that Λm×n (or Eq. (2))
is 2-MITEable if a 2-MITE POPL network satisfies Eq. (2)
without using any copies of the input currents i.e., the number
of MITEs is m + n.

Ideally, the necessary and sufficient condition for the circuit
in Fig. 1(a) to have an unique operating point is “det(X) �= 0”.
The multiple feedback loops present in MITE circuits can,
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Fig. 1. (a) The general form of the MITE network implementing a POPL function. The output currents are a product of the input currents raised to different
powers. (b) A component of the Coates graph (with directed circuit C) Gc(X) of the input-connectivity matrix X of a 2-MITE POPL network.

however, cause multiple operating points [8]. The following
condition suffices to ensure that the operating point is unique:

P1 X is nonsingular and is a P0 matrix (i.e., X has
nonnegative principal minors)

This implies, in particular, that xii ≥ 0. We will make the
following stronger assumption:

Assumption 1: The input connectivity matrix X of a POPL
network has a positive diagonal.
A POPL MITE network described by input-connectivity ma-
trix X is stable (in the sense of [9]) if:

P2 X is D-stable. i.e., DX must be positive-stable for all
diagonal matrices D with positive diagonal.

X satisfies P1 if it satisfies P2 [11]; however, there is no
known finitely testable characterization for D-stability for
matrices of order greater than three.

For a 2-MITE POPL network, xii(> 0) is either 1 or 2.
Since the rows of X sum to 2, we can write X = In + X ′,
where X ′ has exactly one nonzero entry, namely 1, in each
row. Hence, for every row k, we can define a α(k) such that
[X ′]kα(k) is one. Clearly, X is (row) diagonally dominant,
though not necessarily strictly row diagonally dominant. The
following theorem then implies that X is D–stable.

Theorem 1: If A = [aij ] ∈ Mn is nonsingular, row-
diagonally dominant, and has a positive diagonal, then A is
D–stable (and hence is also nonsingular and a P0 matrix).

Proof : Consider DA = [diaij ] where the diagonal matrix
D has dii > 0. Geršgorin’s theorem [11] tells us that the
eigenvalues of DA lie in the union of n discs

G(DA) =
n⋃

i=1

{λ ∈ C : |λ − diaii| ≤
n∑

j �=i

|diaij |} (3)

The conditions diaii > 0 and diaii ≥ ∑n
j �=i|diaij | imply

that each of the discs lies in the open right half s-plane
with the possible exception of including 0. However, the case
λ(DA) = 0 would imply that det(A) = 0, which has been
excluded by hypothesis. �
Though not shown here, X is diagonally stable (i.e., has
a positive diagonal Lyapunov solution) and hence the D–
stability is maintained under small perturbations of the ele-
ments of X [12], even though the row-diagonal dominance is
not preserved.

IV. 2-MITE NETWORK GRAPHS

In this section, the structure of the Coates graphs of the input
connectivity matrices of 2-MITE POPL networks is analyzed.

Restricting both the number of MITEs and the fan–in of
a MITE also restricts the possible power matrices that are
obtainable from a POPL network. If the fan–in is fixed at 2,
it is necessary to find out which powers are obtainable before
increasing the number of MITEs suitably. To this end, we take
a graph theoretic approach to determine Λ = Y X−1 for a 2-
MITE network. To find X−1, we use the method of Coates
graphs [10]. Every A = [aij ] ∈ Mn corresponds to a weighted
digraph Gc(A) with vertices {1, 2, . . . , n} such that there is
directed edge (j, i) with weight aij if aij �= 0.

Theorem 2: The input-connectivity matrix X of a 2-MITE
POPL network can be written as X = In + X ′. Then,

1) Each component G of Gc(X ′) has a unique directed
circuit (self-loops are directed circuits of length 1).

2) If the directed circuit in the digraph G is contracted to
a single vertex v, then the resulting digraph is a rooted
tree [13] with v as the root.

Proof of 1: Every vertex i in Gc(X ′) has in-degree 1, and
if (j, i) ∈ E, then j = α(i). Hence, we can define the parent
α(i) and a sequence of ancestors {αk(i)} for every vertex i.
If vertex j �= i is an ancestor of vertex i, then we say j ≺ i.
We define j � i to mean that either j ≺ i or j = i. For any
vertex i, consider the sequence {i, α(i), α(α(i)), . . . }. Since
there are only n vertices, the sequence cannot have distinct
elements, and hence there exists a vertex j and an integer
p > 0 such that αp(j) = j. This corresponds to a directed
circuit of length at most p in Gc(X ′) and implies that the
sequence of ancestors of any vertex i eventually leads to a
directed circuit C. We will say that i is descended from C.

The relation of being descendants of the same directed
circuit is clearly an equivalence relation. We will show that
the equivalence classes are the vertex sets of components of
Gc(X ′). If not, there is a (undirected) path P beginning from
an equivalence class and ending in a different equivalence
class. It is clear that there is an edge (j, i) ∈ P where the ver-
tices j and i belong to different equivalence classes. However,
this implies that j ≺ i and hence must be descended from the
same directed circuit as i, which contradicts the definition of
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the classes. Each equivalence class being obviously connected,
it follows that each is a component of Gc(X ′).

Proof of 2: If the directed circuit in a component G is
contracted into a single vertex v, it follows that the sequence
of ancestors of any vertex i in G (that was not in the directed
circuit) now ends at v. Hence, there is a directed path from v
to each vertex in G. That this directed path is unique follows
from the fact that each vertex has a unique parent. By a
characterization of rooted trees [13], G is a rooted tree. �
This characterization of 2-MITE POPL networks enables us
to find simple expressions for X−1, as given below.

V. NECESSARY CONDITIONS

Using the method of Coates graph [10], we now derive
expressions for X−1 and Λ = Y X−1. The determinant of
X ∈ Mn is given by

det(X) =
∑
H

(−1)n−LH w(H) (4)

where H is a 1-factor of Gc(X), and LH is the number of
directed circuits in H . The cofactor ∆ij of xij is given by

∆ii =
∑
H

(−1)n−1−LH w(H)

∆ij =
∑
Hij

(−1)n−1−L′
H w(Hij), i �= j

(5)

where H is a 1-factor in the graph obtained by removing i
from Gc(X), Hij is a 1-factorial connection in Gc(X) from
vertex i to vertex j, and LH and L′

H are the numbers of
directed circuits in H and Hij , respectively.

If Gc(X) is not connected, then by reordering the rows and
columns of X , we can write X as a direct sum of matrices Xi

that are connected (representing the components of Gc(X)).
Since X−1 is the direct sum of the individual inverses, for
finding X−1, it suffices to assume that Gc(X) is connected.

Some definitions are in order:
Definition 1: When n is a nonnegative integer, we define

(−)n to be (−1)n. (−)∞ is defined to be 0.
Definition 2: The distance d(i, j) is defined as the length of

the shortest directed path from vertex j to vertex i, if a directed
path exists. If no directed path exists from j to i, then d(i, j)
is defined to be ∞. d(i, i) is 1 if vertex i is attached to a
self-loop and is defined to be 0 otherwise.
We will avoid the details of the calculations involved in finding
the inverse using the formulae in Eq. (4) and Eq. (5) due to
lack of space. If Gc(X) is connected, and C is the unique
directed circuit in Gc(X ′) with k edges in it, then

det(X) = 1 + (−1)k+1 (6)

Clearly, X is nonsingular iff k is odd in which case det(X) =
2. X−1 is then given by

[X−1]ij =
[adj(X)]ij
det(X)

=

{
(−)d(i,j) if j is not in C
1
2 (−)d(i,j) if j is in C.

(7)

To find Λ = Y X−1, since Y 1n = 21m, it follows that
every row in Y contains either a 1 in two different columns

or a 2 in a single column; the other elements in the row being
0. Hence, we can write yij = δjβ(i) + δjγ(i), where δ is the
Kronecker delta function. From this, we have

Λij =

{
(−)d(β(i),j) + (−)d(γ(i),j) if j is not in C
1
2 ((−)d(β(i),j) + (−)d(γ(i),j)) if j is in C.

(8)

The only possible values for (−)d(i,j) are −1,+1 and 0. Hence
it follows that

Λij ∈ {−2,−1, 0, 1, 2}, if j is not in C

Λij ∈ {−1,−1
2
, 0,

1
2
, 1}, if j is in C

(9)

Thus, it is clear that the same column in Λ cannot have both a
±2 and a ±1/2. For the ith row, if Λij is ±1/2, then it means
that j is in C and that there is a directed path from j to either
β(i) or γ(i) but not both. From Theorem 2, it follows that
β(i) and γ(i) belong to two different components. From this,
it is clear that Λij can not be ±2 for any j. Similarly, it can
be shown that if Λij = ±2, then no element in the same row
can be ±1/2. In summary, the following necessary conditions
can be concluded:

Condition 1: A power matrix Λ is 2-MITEable only if

1) Λij ∈ {−2,−1,−1/2, 0, 1/2, 1, 2}
2) No row or column of Λ can contain both a ±2 and a

±1/2.
Example: Neither Λ = [1 1 .5 .5 −2] nor Λ =

(
1 −1 .5 .5

−2 1 2 0

)
is 2-MITEable.

Also, any leaf j (vertex of out-degree 0) in Gc(X ′) should
be a β(i) or a γ(i), for otherwise the entire jth column in Λ
will be 0, which renders Ij in Eq. (2) useless.

VI. SINGLE-OUTPUT POPL NETWORKS

We discuss the conditions for a Λ matrix to be 2-MITEable
for the single-output case i.e., Λ is a row vector. Let yj =
δjβ + δjγ . Without loss of generality, we can assume that Λj

is nonzero for any j, since otherwise the input Ij becomes
redundant in Eq. (2).

Case 1: β and γ are in the same component, with associ-
ated direct circuit C.
The only possible Coates graph is of the form shown in
Fig. 2(a) (All other cases can be rejected because Λj becomes
zero for some j). Different subcases that can be considered
are γ = δ (Fig. 2(c)), δ = γ = β (Fig. 2(b)), δ = γ = β = ε
(Fig. 2(d)). Only the general case is considered here; the
powers in the other cases behave as shown in the figures.
Since Λδ �= 0, (−1)d(β,δ) + (−1)d(γ,δ) �= 0. This means that
d(β, δ) − d(γ, δ) must be even. Using Eq. (8), we get:

Λj =




(−1)d(γ,j) if δ ≺ j � γ

(−1)d(β,j) if δ ≺ j � β

2(−1)d(β,j) if ε ≺ j � δ

(−1)d(β,j) if j ∈ C

(10)

Example: This shows that Λ = [2 2 − 1 − 1 − 1] is
not 2-MITEable but Λ = [1 − 1 2 − 2 2 − 1] is.
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Fig. 2. Gc(X′) for 2-MITE POPL networks with single outputs. (a) and (e) are the only possible general cases. (c),(b),(d) are the subcases of (a) while (f)
and (g) are the subcases of (e). The sequence of Λj values are shown for each section. The double arrows indicate a sequence of directed edges forming a
directed path.

Case 2: β and γ are in different components, with associ-
ated directed circuits C1 and C2.
The only possibility is as shown in Fig. 2(e), allowing for
β = δ or γ = ε (The subcases with both β = δ and/or γ = ε
are shown in Fig. 2(f) and (g)). It is a easy consequence of
Eq. (8) that

Λj =




(−1)d(β,j) if δ ≺ j � β

(−1)d(β,j)/2 if j ∈ C1

(−1)d(γ,j) if ε ≺ j � γ

(−1)d(γ,j)/2 if j ∈ C2

(11)

Example: This shows that Λ = [.5 .5 .5 .5 − 1] is not
2-MITEable but Λ = [.5 − .5 .5 − .5 1] is.
Since there are only few graphs to be compared with, Λ can be
shown to be 2-MITEable or otherwise in this case by arranging
them according to the expressions in Eq. (10) and (11).

VII. CONCLUSION

In this paper, the importance of 2-MITE networks is shown
by the fact that the D–stability of these networks is guaranteed
if the input-connectivity matrix is nonsingular and has a
positive diagonal. A graph-theoretic approach to the problem
of synthesis using 2-MITEs is taken. An expression for the
powers obtained in a 2-MITE POPL network is arrived at
using the theory of Coates graphs and is shown in terms of
distances between two vertices in a digraph. This leads to
necessary conditions and, for the single-output case, sufficient
conditions for a power matrix to be 2-MITEable.
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