
Hierarchical Placement for Large-scale FPAA
I. Faik Baskaya, Sasank Reddy, Sung Kyu Lim, and David Anderson

School of Electrical and Computer Engineering
Georgia Institute of Technology

{baskaya, sreddy, limsk, dva}@ece.gatech.edu

Abstract— Modern advances in reconfigurable analog technolo-
gies are allowing field-programmable analog arrays (FPAAs) to
dramatically grow in size, flexibility, and usefulness. Our goal in
this paper is to develop the first hierarchical placement algorithm
for large-scale floating-gate based FPAAs with a focus on the
minimization of the parasitic effects on interconnects under
various device-related constraints. In our hierarchical approach,
our FPAA clustering algorithm first groups analog components
into a set of clusters so that the total number of routing switches
used is minimized and all IO paths are balanced in terms of
routing switches used. Our FPAA placement algorithm then maps
each cluster to a Computational Analog Block (CAB) of the target
FPAA while focusing on routing switch usage again. Experimental
results demonstrate the effectiveness of our approach.

I. INTRODUCTION

While digital processors can perform the desired functions,
there are many cases where an analog design can offer
the same functionality at a fraction of the power required
for the digital solution. Modern advances in reconfigurable
analog technologies are allowing field-programmable analog
arrays (FPAAs) to dramatically grow in size, flexibility, and
usefulness. With these advances, analog circuits and systems
can be programmable, reconfigurable, adaptive, implemented
on standard CMOS to take advantage of scaled CMOS tech-
nology, and at a density comparable to digital memories.
Our goal in this paper is to develop the first physical design
automation toolset for floating-gate based FPAA with focus
on minimization of parasitic effects on FPAA interconnect.

The floating-gate transistors used in our FPAAs are standard
pFET devices whose gate terminals are not connected to
signals except through capacitors. Because the gate terminal
is well insulated from external signals, it can maintain a
permanent charge, and thus, it is an analog memory cell similar
to an EEPROM cell. We develop the first mapping algorithm
for floating-gate based large-scale FPAA. The possibility of
programmable analog technology has potential to penetrate
the market from simple one-parameter programmable elements
to large-scale signal processing front-end systems. A few
companies have already started investigating using analog
floating-gate elements as simple trimming elements for analog
applications, but these approaches only start to unlock the
potential of this technology.

There currently exist several CAD works for FPAAs in
the literature including behavioral synthesis [1], [2], tech-
nology mapping [3], [4], and place-and-route [1], [5], [4].
However, these works focus only on small-scale, switch-
capacitor based designs. On the other hand, our floating gate-

Analog Circuit Components

+

?

WR_OTA

C4 (AFGA)

In Out

+

?

WR_OTA

+

?

WR_OTA

(a) (b)

40x48

x-bar

CAB

16x16

x-bar

40x48

x-bar

CAB

16x16

x-bar

40x48

x-bar

CAB

16x16

x-bar

40x48

x-bar

CAB

16x16

x-bar

Fig. 1. (a) Computational Analog Block (CAB) for an FPAA based on
floating-gate devices, where each CAB contains a four-by-four matrix multi-
plier, three wide-range operational transconductance amplifiers (OTAs), three
fixed–value capacitors, a capacitively coupled current conveyor (C4), a signal-
by-signal multiplier, one pFET, and one nFET. (b) overall block diagram for a
large-scale FPAA. The switching interconnects are fully connectable crossbar
networks built using floating-gate transistors.

based FPAAs contain up to 256 (16×16) complex CABs,
thereby necessitating more scalable approach to handle the
complexity. In addition, the device and interconnect constraints
in our floating-gate based FPAA are radically different from
the switch capacitor-based FPAA. Since the major parasitic
effects on our FPAA chips are due to parasitic resistance and
capacitance on FPAA interconnects, our goal is to minimize
the overall routing switches used while satisfying various
device/wire-related constraints.

II. PROBLEM FORMULATION

A. FPAA Device Modeling

A floating-gate element is a polysilicon layer that has no
contacts to other layers; this floating-gate can be the gate of a
MOSFET and can be capacitively connected to other layers.
Charge on the floating-gate is stored permanently, providing
a long-term memory, because it is completely surrounded by
a high-quality insulator. Since the floating-gate voltage can
modulate a MOSFET’s channel current, the floating-gate is
not only a memory, but also can be an integral part of a com-
putation. The charge on the floating-gate is modified through
a combination of hot-electron injection and electron tunneling
[6] The small size and scalability make these approaches
ideal for integration with classical analog techniques (e.g.
voltage references, filters, ADCs or DACs) as well as larger-

0-7803-9362-7/05/$20.00 ©2005 IEEE 421

scale analog signal processing techniques (e.g. compression or
classification for audio or image signal processing).

The computational logic in the FPAA is organized in
a compact computational analog block (CAB) that consists
of op-amps, transistors, multiplier, programmable capacitors,
edge detectors and filters. An illustration is shown in Figure
1. CABs are tiled across the chip in a regular mesh-type
architecture with busses and local interconnects in-between.
The major parasitic effects on FPAA chips are due to parasitic
resistance and capacitance on FPAA interconnects. Unlike
digital circuits, these parasitics have a cumulative impact on
performance of analog circuits. Therefore, the primary objec-
tive during mapping is to minimize the number of switches
connected to a signal path and also to balance the different
signal paths.

B. FPAA Hierarchical Placement Problem

We model the given FPAA architecture with an undirected
graph A(V, E), where V denotes a set of CABs, I/O cells,
local crossbars, and global crossbars, and E denotes a set of
local wires, crossbar wires, global wires, and I/O wires. We
model the given analog circuit with a directed graph G(V, E),
where V denotes a set of passive, active, pseudo, and I/O
elements in the circuit and E denotes a set of connections
among the elements.

The hierarchical placement problem defined in this graph
consists of two parts: The first part is clustering the circuit into
several partitions. The input to the FPAA clustering problem
is an analog netlist along with a target FPAA architecture.
The output is a clustered netlist that satisfies the device-
related resource constraints, i.e., number of components and
IO ports in each CAB. The primary objective is to minimize
the amount of inter-cluster connection, which has positive
impact on total number of switches needed after routing. The
secondary objective is to pack each cluster to its capacity in
order to minimize the number of CABs needed. The second
part is placement which is to seek a one-to-one mapping
between the set of clusters obtained from FPAA clustering and
the set of CABs in the given FPAA architecture. In addition,
we map I/O ports in the given circuit to I/O nodes in the FPAA.
The primary objective is to minimize the estimated number of
switches needed after routing.

III. FPAA INTERCONNECT ANALYSIS

The routing resource in our floating-gate based FPAA
is shown in Figure 2. There exist three kinds of routing
switch boxes: local, vertical, and horizontal crossbar. The local
crossbar is used to establish connection among components
in the same CAB. The vertical crossbar is used to connect
components from CABs in the same column. Lastly, the
horizontal crossbar is used to connect components from CABs
in different columns. The routing switches in local, vertical,
and horizontal crossbars are respectively called local, vertical,
and horizontal switches. Each column in the vertical crossbar
extends all the way from top to bottom, while each row in the
horizontal crossbar extends all the way from left to right.

R

C
w

R

1

C
l

C
w

2

R

C
w

R

C
v

C
w

R R RR

3

C
w

C
v

C
h C

v
C

w

1

3

2

C
l

C
v

C
h

R

loc x-bar

v
e
r

x
-b

a
r

hor x-bar

C

A

B

C
w

Fig. 2. Routing resource for a 2 × 2 FPAA that consists of local, vertical,
and horizontal crossbrs. Three types of interconnects (1: intra-CAB, 2: inter-
CAB/intra-column, 3: inter-column) are also shown.

Each row or column in these crossbars can only be used by
a single interconnect. In addition, once a net is occupying a
row (or column), the sum of the resistance and capacitance
of all routing switches in this row (or column) contribute
to the delay of the interconnect. Each switch contributes a
parasitic diode capacitance from the drain of the switch to
ground regardless of the switch being on or off. This is the
depletion capacitance, and the worst case (highest) value of
this capacitance is when the switch is off [7]. Since there is a
number of switch capacitances in parallel on a line, the total
capacitance of the line is assumed to be the sum of all these off
capacitances. The difference that comes from only one switch
being on is neglected. When a switch is turned on, there will
also be a resistance in series on the order of 10 kΩ [8]. Each
switch contributes a pole when added into the circuit path and
has a negative impact on the bandwidth.

The following three kinds of interconnects are possible
depending on the placement of components (see Figure 2):

• intra-CAB wires (type 1): these wires connect compo-
nents in the same CAB using the switches in local
crossbar. We model the resistance of local switches that
are turned on (= R). The capacitive component of the
wire includes all local switches in the entire row (= Cw)
and column (= Cl) occupied by the wire. The parasitics
of these wires are minimal.

• inter-CAB/intra-column wires (type 2): these wires con-
nect components from different CABs located in the same
column. We model the resistance of vertical switches that
are turned on (= R). The capacitive component of the wire
includes all vertical switches in the entire row (= Cw) and
column (= Cv) occupied by the wire. The parasitics of

422

these wires are between those of type 1 and 3 wires.
• inter-column wires (type 3): these wires connect compo-

nents from differen CABs located in different columns.
We model the resistance of vertical and horizontal
switches that are turned on (= R). The capacitance of
all vertical and horizontal switches along the rows (= Cw

and Ch) and columns (= Cv) occupied by the wires are
modeled. The parasitics of these wires are maximal.

We assume that Cw < Cv , Cw < Ch, and Cl < Cv . In case
the interconnect contains more than two components (= multi-
pin net), each source-to-sink connection can be individually
modeled. The type 1 wires are alternatively called i-nets in
this article, whereas type 2 and 3 are called x-nets.

Due the the exclusive usage of routing tracks (= rows and
columns in the crossbars) by the interconnect, the number of
available routing tracks imposes a strict design constraint. For
example, the number of vertical tracks available for each CAB
column is 10 in our current 8 × 8 FPAA design. The reason
for this strict constraint is due to the inverse relation between
the number of routing switches in each track and bandwidth.
Architectural design space exploration can reveal good tradeoff
points between the number of routing switches vs bandwidth
degradation.

IV. FPAA CLUSTERING ALGORITHM

A. Overview of the Approach

The primary aim in FPAA clustering is to pack the circuit
components that are closely connected to each other within the
same CABs. This process is constrained by device, internal
net and external net limitations. The objective is to utilize the
device and internal net resources of the CABs as much as
possible while keeping the external net use lower in order to
make room for the placement phase. While CAB selection
is carried out by ranking all the CABs and picking the best
among them, there are several alternatives that can be taken
for cell selection.

B. Constraints and Objectives

There are two main types of structural constraints in the
FPAA architectures, namely, device and net constraints. There
is a certain number of each device or analog circuit block in
each CAB. These numbers determine the device constraints.
Furthermore, we don’t have infinitely many wires and switches
for connecting the devices and circuit blocks to each other.
The wires for connecting components of the same CAB to
each other are called as internal nets or i-nets whereas the
remaining wires that are used to connect devices from different
CAB’s to each other are called as external nets or x-nets.
Each type of net has its own limits and all these limits in
addition to the device constraints are defined in a device file.
In the proposed FPAA clustering algorithm, we also accept
user defined constraints which tell the components that have
to be in the same cluster.

The objectives of clustering is to minimize the inter-CAB
connection and maximize the CAB device utilization. In order

to minimize the former, increasing the number of i-nets and
decreasing the number of x-nets are encouraged for each CAB.

C. Cell Selection

In this step, the cells in the graph corresponding to the
components in the circuit netlist are put in an order according
to different criteria and selected for clustering in this order.
The ordering criteria will be explained below.

1) Pre-clustering: User constraints dictate that certain cells
have to be placed in the same cluster under all conditions. In
addition, pseudo cells and master cells they are associated with
have to be grouped together. All these cells are grouped under
higher level cells that will be treated as single cells after this
phase. The cells that are not grouped under a higher level cell
are called as atomic cells.

The Input-Output (IO) cells and the non-IO cells are also
separated from each other in this step. IO cells are not
considered in clustering except for their connections to the
non-IO cells.

2) Cell ordering: Once the cells are grouped, all non-IO
cells are put into an order for clustering. During ordering, three
cell types may be encountered. The cell to be clustered may
be an atomic cell, a group of pre-clustered atomic cells, or a
Vector Matrix Multiplier (VM) cell. VM is a large component,
so it is not available in most CABs in the FPAA. Thus, giving
the highest priority to this type in ordering is reasonable.

Cells may be ordered using different methods. In this work,
two different approaches were used. According to the first
approach, VM cells and all other cells are ordered randomly
within their own groups. According to the other approach, VM
cells and group cells are ordered with respect to their sizes and
the atomic cells are ordered according to the Modified Hyper
Edge Coarsening scheme [9]. This is a net-driven approach
and the motivation is to give higher priority to the cells
that belong to the nets containing less components, thereby
reducing the inter-CAB connections. Net-driven approach is
not implemented alone. In stead, we also take path lengths
into consideration and try to balance them.

3) Path length balancing: A directed acyclic graph cor-
responding to the same circuit is analyzed for determining
arrival and required times of each cell and a time slack value
is extracted. The less the time slack value of a cell is, the
more critical that path is. So, if lower time slacked cells are
clustered first, the paths will be expected to be more balanced.
This approach is not implemented alone. Instead, time slack
values are used as tie breakers when there is an equality in
the net-driven approach. Thus, this approach can be called as
net/path driven approach.

D. CAB Selection

A pseudocode for the CAB selection algorithm is presented
in Figure 3. The cells to be clustered are already ordered in
the previous step. Next, for each of these cells every CAB
is scanned for availability and then ranked. Ranking is done
based on the improvement of occupancy of the cab, increase
in the number of i-nets and decrease in the number of x-nets

423

CAB Selection
1: best = NULL;
2: for (each ordered cell i)
3: for (each CAB c)
4: if (c is available for i)
5: if (rank(c) > rank(best))
6: best = c;
7: if (best == NULL)
8: for (each CAB x with x-net violation)
9: if (x-net reduce(x))
10: best = x;
11: return best;

Fig. 3. Pseudo code for CAB select algorithm.

x-net reduce(c)
1: while (x net(c) > x net limit)
2: for (each neighbor n of c)
3: if (c is available for n)
4: pkey[n] = # nets in n not connecting to c;
5: skey[n] = # nets in n connecting to c;
6: if (no n is available)
7: return FALSE;
8: add n with max skey[n] with min skey[n];
9: return TRUE;

Fig. 4. Pseudo code for x-net reduction algorithm.

when the given cell is assigned to the CAB of interest. The
CAB with the highest rank is selected for assignment.

A CAB may be unavailable for a given cell due to device
and net constraints. If addition of the cell violates the device
constraints or i-net constraints (local switch limits), there is
no way that this selection may be feasible. X-net violation,
on the other hand, is a different issue. Allowing temporary
violation of x-net constraints may later result in an increase in
i-nets within acceptable limits. Thus, the cabs which violate
only x-nets are kept in a separate list, called as x-net-violate-
only cabs in an order such that the cabs with lower overflow
value are in front. These cabs are tested for x-net reduction
algorithm (line 10) in the case that no available CAB’s may
be found for assignment.

X-net reduction algorithm described in Figure 4 is inspired
by Prim’s minimum spanning tree algorithm. The objective of
this algorithm is to reduce the number of x-nets of the cluster
assigned to the given cab to an acceptable level. This value
could be the x-net limit or even lower. Every neighboring cell
available for this cluster is given a key, which is the number
of nets of this neighbor cell not shared with the cluster. Then
the neighbor with the minimum key is selected for assignment
to the cab containing the cluster. If there are several cells all
having the same minimum key value, then we look at the
maximum secondary key holder among these cells. Secondary
key is the number of nets of a cell which are also shared with
the given cluster. X-net reduction continues until the number
of x-nets are below the desired value (success), or the cab is
no more available for neighboring cells (no success).

Constructive FPAA Placement
1: sort CABs based on xnets;
2: for (each CAB c)
3: for (each column n)
4: if (c.type is in n)
5: if (c.xnetsused < n.xnetlimit)
6: add c to n;
7: sort columns based on xnets;
8: else
9: break;
10: return n;

Fig. 5. Pseudo code for constructive FPAA placement algorithm.

V. FPAA PLACEMENT ALGORITHM

A. Overview of the Approach

FPAA placement is the process of performing a one-to-one
mapping between the set of Clustered CABs (CCAB) that
are generated after performing the clustering algorithm and
Physical CABs (PCAB) that exist in the FPAA architecture.
Furthermore, the I/O nodes that appear in the CCABs are
mapped to the corresponding I/O nodes, which we call as
external nets, or xnets in short, in the PCABs. These xnets
may connect several PCABs in the same or in different FPAA
columns.

B. Problem Formulation

The placement problem consists of several constraints. First,
the type constraints must be met in the PCAB structure. Since
the physical FPAA structure can contain several different types
of CABs based on architectural differences, the placement
algorithm needs to properly correspond the CCAB types to
PCAB types. Another constraint of the placement problem
is that each column in the physical FPAA structure can
only have a certain number of CABs associated with it.
Furthermore, each column consists of a certain number of
each type of CABs. Thus, the placement algorithm has to
meet the type and number constraints for the columns in the
physical FPAA structure. The placement algorithm also has
to take xnet limitation of the PCABs and columns of PCABs
into consideration. Since the xnets on an FPAA column may
be shared among its PCABs, number of xnets associated with
each CCAB can not be simply added. In stead, the repeated
xnets are counted only once.

The objective of this placement is to reduce the loading
effects of interconnects and switches. At this time, we try to
reduce the total number of switches and this requires reducing
the number of columns that each xnet traverses through. This
comes from the fact that every connection from a PCAB to
another requires one and only one switch to one of the vertical
buses and for every wire in other columns to be connected to
this xnet, one more switch will be required in a horizontal bus.
Thus, the objective is to minimize the repetition of xnets in
different columns.

424

C. Constructive FPAA Placement

The initial process, referred to as Constructive FPAA Place-
ment (CFP) (see Figure 5), is focused around finding a viable
solution that can be refined by the Stochastic Refinement
process. During the CFP process, the CABs that are formed
during the clustering process are arranged in descending order.
A column data structure that can contain a set of CABs
is created as well. The columns are arranged in ascending
order based on number of external nets that are used. Each
column data structure also contains type limitations. Since the
clustered CABs can be of different types, based on if there
is a vector multiplier present or not, the algorithm has to
consider the types as the clustered cabs are placed in the
columns. The clustered CABs are placed in columns if the
type restriction and the external nets limit are satisfied. If one
of the restrictions fails, than the next column is considered
and the restrictions are applied again. This process repeats
until the CAB is placed in a column. If the CAB doesn’t get
placed then the process fails. If the process succeeds than the
next CAB is considered. When the CFP process completes, a
viable solution is provided to the Stochastic process.

D. Stochastic Refinement

Constructive placement method is not intended to yield
optimum results in terms of number of required horizontal-
global switches (hgsw). Simulated annealing is a widely used
and well developed probabilistic placement method and is
employed as the last step of this hierarchical placement tool.
It uses the result of the preceding step as an initial placement
and searches better placements swapping the CABs randomly.

For this problem, the cost is a weighted sum of hgsw
and maximum of number of x-nets in each column. If the
CAB swap operation decreases the cost, this change is kept.
If not, it is kept with a probability that decreases at every
iteration. This mechanism prevents from getting stuck at a
local minimum far from reaching the global minimum. The
probability of allowing a cost increasing change is e

−ΔC
temp . The

temperature changes from 400000 down to 1 and is multiplied
by a coefficient every iteration. This coefficient is also a
function of temperature (0.95 in the medium temperatures,
0.8 in the high and low temperatures).

VI. EXPERIMENTAL RESULTS

We implemented our algorithms using C++/STL, compiled
with gcc v3.3, and tested on a Dell Latitude X300, running on
a 1.2 GHz Pentium M processor with 632 MB of RAM. The
algorithms were tested in 4 different FPAA architectures of
various sizes with 18 benchmark circuits using one of these
architectures. Currently, there are two available CAB types:
type 0 (cab0) includes 3 op-amps, 1 capacitor, 2 grounded
capacitors, 1 vector multiplier, 1 min-max calculator, 1 pFET,
1 nFET, 1 C4 filter, and 10 local wires. The configuration
of the type 1 (cab1) is the same except that it does not
include the vector multiplier. Table I summarizes different
FPAA architectures. Due to the different number of rows in
each architecture, each FPAA column may accommodate more

TABLE I

FPAA ARCHITECTURES

fpaa1 fpaa2 fpaa3 fpaa4
dimension 4 × 4 8 × 8 12 × 12 16 × 16
cab0 4 16 36 64
cab1 12 48 108 192
global wires (per column) 8 22 41 48
global wires (total) 32 176 492 768

TABLE II

BENCHMARK CIRCUITS

ckt comp net arch ckt comp net arch
1 10 17 fpaa1 10 74 115 fpaa2
2 20 29 fpaa1 11 187 253 fpaa3
3 14 24 fpaa1 12 218 311 fpaa3
4 20 31 fpaa1 13 267 384 fpaa3
5 16 23 fpaa1 14 423 602 fpaa4
6 97 131 fpaa2 15 396 554 fpaa4
7 89 128 fpaa2 16 403 567 fpaa4
8 96 135 fpaa2 17 385 545 fpaa4
9 95 136 fpaa2 18 474 680 fpaa4

CABs. Thus, inter-CAB/intra-column interconnect limitations
have to be adjusted accordingly. Therefore, different number
of global wires per column are allowed for each architecture.
The 18 benchmark circuits being used are displayed in Table
II. Sizes of the benchmark circuits range from 10 components
with 17 nets up to 474 components and 680 nets.

A. FPAA Clustering Results

Clustering algorithm with two different cell ordering meth-
ods (baseline random vs. net/path-driven) has been applied
to 18 benchmark circuits in 4 different FPAA architectures
and the results obtained are displayed in Table III. Depending
on the benchmark circuit complexity, number of generated
clusters range from 2 up to 108. CAB utilization for both
cases is about the same. During clustering, the main objec-
tive is to minimize the inter-cluster connection, which will
naturally result in utilization of more internal nets for each
CAB. Increasing the number of i-nets within allowed limits is
actually awarded during the CAB selection process. Obviously,
there is a correlation between the i-net and local switch
(lsw) utilization. As Table III suggests, net/path-driven method
makes better use of the lsw than the baseline method. Use of
external nets on the other hand, requires more concern. X-nets
will continue to be valuable resources in the following phases,
so it would be wise to leave some room for the placement
phase. So having less vgsw is desired, which is the case for
the net/path-driven method.

Another difference between the two methods can be ob-
served in path balancing. Net/path driven method results in
smaller maximum path lengths and less maximum-minimum
differences but higher average path lengths. Since these values
suggest less variation, path lengths of the circuits clustered
using net/path driven method are more likely to be balanced.

B. FPAA Placement Results

Placement phase consists of two steps. Results of both steps
are displayed in Table IV for comparison. The primary objec-
tive of the placement step is reducing the number of horizontal

425

TABLE III

FPAA CLUSTERING RESULTS

random ordered clustering net/path-driven clustering
device usage path balance device usage path balance

ckt cab lsw vgsw max ave max-min cab lsw vgsw max ave max-min
1 2 20 16 14 11 4 2 20 16 14 11 4
2 4 34 25 23 21 3 4 34 25 20 20 0
3 3 26 24 18 16 3 3 28 22 15 15 0
4 4 36 28 29 27 2 5 36 28 32 31 3
5 3 30 19 22 20 4 3 26 23 22 20 4
6 20 105 173 174 78 149 20 138 140 130 71 112
7 17 132 138 90 80 20 16 145 125 87 77 19
8 22 109 183 74 45 50 22 152 140 53 31 36
9 16 113 171 49 36 24 16 163 121 62 53 20
10 14 119 134 58 33 41 14 117 136 57 32 33
11 37 181 350 135 104 61 37 245 286 124 99 49
12 43 270 391 204 103 192 43 335 326 172 99 160
13 59 357 469 109 57 84 58 398 428 126 104 38
14 92 527 755 894 458 878 93 640 642 799 413 783
15 80 487 704 262 175 181 78 592 599 214 155 162
16 75 519 675 277 259 35 75 574 620 212 211 1
17 77 463 692 456 130 439 75 575 580 411 158 394
18 108 608 859 440 282 406 106 716 751 378 251 329
ratio 1 1 1 1 1 1 1.006 1.158 0.901 0.924 1.027 0.732
time 728.27s 717.91s

TABLE IV

FPAA PLACEMENT RESULTS

constructive refinement
ckt maxx hg-sw maxx hg-sw
1 8 4 6 4
2 8 18 8 16
3 8 10 6 10
4 8 18 7 18
5 8 16 7 16
6 22 105 15 89
7 22 100 14 85
8 22 104 15 62
9 22 100 14 77
10 22 108 19 74
11 41 243 22 184
12 41 274 23 180
13 41 355 32 223
14 48 562 34 335
15 48 532 34 375
16 48 556 34 390
17 48 521 32 340
18 48 630 41 362
ratio 1 1 0.704 0.669
time 4.357s 5.438s

global switches (hgsw). Although we can not observe much
improvement in the smaller circuits, the reduction in hgsw for
the larger circuits seem quite satisfactory.

During the constructive placement step, the only aim is
to find a valid column for every CAB as long as there is
enough room for the CAB or its x-nets, so the maximum x-
nets observed in any column is equal to the upper limit at the
end of the placement for all given circuits. The results suggest
that the refinement step can considerably reduce the maximum
number of required x-nets. This can be utilized by allowing
temporary violation of the x-net constraints in the constructive
placement step to compensate for later in the refinement step,
so that more circuits can be successfully placed.

VII. CONCLUSIONS

In this paper we present the problem formulation and
algorithms for clustering targeting floating-gate based FPAA.
Since the major parasitic effects on FPAA chips are due to
parasitic resistance and capacitance on FPAA interconnects,
our goal is to minimize the overall routing switches used
while satisfying various device/wire-related constraints. Our
ongoing work includes routing as well as path length balancing
heuristics.

ACKNOWLEDGMENT

This research has been supported by the National Science
Foundation under contract CNS-0411149.

REFERENCES

[1] H. Wang and S. Vrudhula, “Behavioral synthesis of field programmable
analog array circuits,” ACM Trans. on Design Automation of Electronics
Systems, pp. 563–604, 2002.

[2] S. Ganesan and R. Vemuri, “Behavioral partitioning in the synthesis of
mixed analog-digital systems,” in Proc. ACM Design Automation Conf.,
2001.

[3] ——, “Technology mapping and retargeting for field-programmable ana-
log arrays,” in Proc. Design, Automation and Test in Europe, 2000.

[4] ——, “A methodology for rapid prototyping of analog systems,” in Proc.
IEEE Int. Conf. on Computer Design, 1999.

[5] ——, “FAAR: a router for field-programmable analog arrays,” in Proc.
Intl. Conf. on VLSI Design, 1999, pp. 556–563.

[6] P. Hasler, C. Diorio, B. A. Minch, and C. A. Mead, Advances in Neural
Information Processing Systems 7. Cambridge, MA: MIT Press, 1995,
ch. Single transistor learning synapses, pp. 817–824.

[7] P. E. Allen and D. R. Holberg, Eds., CMOS Analog Circuit Design.
Prentice-Hall, 2002.

[8] T. Hall, C. Twigg, P. Hasler, and D. V. Anderson, “Application perfor-
mance of elements built in a floating-gate FPAA,” in Proceedings of the
International Symposium on Circuits and Systems, Vancouver, BC, May
2004.

[9] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning : Application in VLSI domain,” in Proc. ACM Design
Automation Conf., 1997, pp. 526–529.

426

